Navigation Links
Nanorod-assembled order affects diffusion rate and direction

Some of the recent advancements in nanotechnology depend critically on how nanoparticles move and diffuse on a surface or in a fluid under non-ideal to extreme conditions. Georgia Tech has a team of researchers dedicated to advancing this frontier.

Rigoberto Hernandez, a professor in the School of Chemistry and Biochemistry, investigates these relationships by studying three-dimensional particle dynamics simulations on high-performance computers. His new findings, which focus on the movements of a spherical probe amongst static needles, have landed on the cover of February's The Journal of Physical Chemistry B.

Hernandez and his former Ph.D. student, Ashley Tucker, assembled the rodlike scatterers in one of two states during his simulations: disordered (isotropic) and ordered (nematic). When the nanorods were disordered, pointing in various directions, Hernandez found that a particle typically diffused uniformly in all directions. When every rod pointed in the same direction, the particle, on average, diffused more in the same direction as the rods than against the grain of the rods. In this nematic state, the probe's movement mimicked the elongated shape of the scatterers. The surprise was that the particles sometimes diffused faster in the nematic environment than in the disordered environment. That is, the channels left open between the ordered nanorods don't just steer nanoparticles along a direction, they also enable them to speed right through.

As the density of the scatterers is increased, the channels become more and more crowded. The particle diffusing through these increasingly crowded assemblies slows down dramatically in the simulation. Nevertheless, the researchers found that the nematic scatterers continued to accommodate faster diffusion than disordered scatterers.

"These simulations bring us a step closer to creating a nanorod device that allows scientists to control the flow of nanoparticles," said Hernandez. "Blue-sky applications of such devices include the creation of new light patterns, information flow and other microscopic triggers."

For example, if scientists need a probe to diffuse in a specific direction at a particular speed, they could trigger the nanorods to move into a specified direction. When they need to change the particle's direction, scatterers could then be triggered to rearrange into a different direction. Indeed, the trigger could be the absence of sufficient nanoparticles in a given part of the device. The ensuing reordering of the nanorods would then drive a repopulation of nanoparticles that would then be available to perform a desired action, such as to stimulate light flow.

"While this NSF-funded work to better understand the motion of particles within complex arrays at the nanoscale is very fundamental," Hernandez says, "it has significant long-term implications on device fabrication and performance at such scales. It's fun to think about and provides great training for my students."


Contact: Jason Maderer
Georgia Institute of Technology

Related biology news :

1. Rare genetic disorder gives clues to autism, epilepsy, mental retardation
2. Vitiligo skin disorder could yield clues in fight against melanoma
3. Anti-cancer drug prevents, reverses cardiovascular damage in mouse model of premature aging disorder
4. Study provides insight on a common heart rhythm disorder
5. BIO-key(R) Announces Additional $245,000 in Third Quarter Public Safety Orders
6. NARSAD announces 2008 Prizes for Outstanding Achievement in Research on Mental Health Disorders
7. OSAs ISP launches with research on breathing disorders and congenital heart defects
8. Seasonal affective disorder may be linked to genetic mutation, study suggests
9. Bipolar disorder genes, pathways identified by Indiana University neuroscientists
10. Inherited genetic cause, possible treatment found for complex lung disorder
11. Deranged calcium signaling contributes to neurological disorder, UT Southwestern researchers find
Post Your Comments:
Related Image:
Nanorod-assembled order affects diffusion rate and direction
(Date:4/28/2016)... GOTHENBURG, Sweden , April 28, 2016 ... 1,491.2 M (139.9), up 966% compared with the first quarter of ... Operating profit totaled SEK 589.1 M (loss: 18.8) and the operating ... SEK 7.12 (loss: 0.32) Cash flow from operations was ... , The 2016 revenue guidance is unchanged, SEK 7,000-8,500 M. ...
(Date:4/15/2016)... 15, 2016  A new partnership announced today ... underwriting decisions in a fraction of the time ... and high-value life insurance policies to consumers without ... With Force Diagnostics, rapid testing (A1C, Cotinine and ... (blood pressure, weight, pulse, BMI, and activity data) ...
(Date:3/31/2016)...   LegacyXChange, Inc. ... LegacyXChange is excited to release its first ... be launched online site for trading 100% guaranteed authentic ... also provide potential shareholders a sense of the value ... industry that is notorious for fraud. The video is ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... Diego, CA (PRWEB) , ... June 27, 2016 , ... ... solutions for clinical trials, announced today the Clinical Reach Virtual Patient Encounter ... their care circle with the physician and clinical trial team. , Using the CONSULT ...
(Date:6/27/2016)... Hill, N.C. (PRWEB) , ... June 27, 2016 ... ... U.S. commercial operations for Amgen, will join the faculty of the University ... serve as adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a ...
(Date:6/27/2016)... 27, 2016   Ginkgo Bioworks , a leading ... was today awarded as one of the World ... world,s most innovative companies. Ginkgo Bioworks is engineering ... real world in the nutrition, health and consumer ... with customers including Fortune 500 companies to design ...
(Date:6/24/2016)... 2016 Epic Sciences unveiled a liquid ... to PARP inhibitors by targeting homologous recombination deficiency ... new test has already been incorporated into numerous ... types. Over 230 clinical trials are ... including PARP, ATM, ATR, DNA-PK and WEE-1. Drugs ...
Breaking Biology Technology: