Navigation Links
Nanoresearchers challenge dogma in protein transportation in cells
Date:9/21/2009

- We now begin to understand how signalling proteins recognize and transport to certain areas of the cell and get a more clear insight on the mechanism of major cellular processes such as cell signalling and growth. This valuable knowledge could be used in the future to understand and cure disease such as depression and Alzheimer's explains Associate Professor Dimitrios Stamou, Nano-Science Center and Department of Neuroscience and Pharmacology, who led the work.

Cells depend critically on their ability to selectively, transport and isolate proteins in specific areas. Earlier ideas that proposed proteins to move around in the cell by recognizing nanoscale patches in their surrounding membrane, also called lipid rafts, are currently under intense debate. However researchers from Nano-Science Center found a new unsuspected mechanism based on the shape of the membrane and just had their results published in the prominent scientific journal Nature Chemical Biology.

Attractive curves on the nanoscale

Like all other materials, cell membranes will crack when bend. Membranes however show a unique property: bending them more and more does not create bigger cracks but simply many more cracks of the same size. It turns out certain important proteins "like" to bind in these cracks therefore the curved parts of a membrane become a good place for them to "meet" each other and thus perform the complicated tasks that need many different proteins working side by side.

- We were very surprised that it is the number of cracks in the membrane that determines how many proteins are bound. Up until now researchers in the field thought that the crucial element was the proteins ability and "desire" to bind to the membrane, also called the affinity. Our data speaks against that, explains Nikos Hatzakis, Nano-Science Center and Department of Chemistry.

The model is general

In cells proteins are travelling around in small vesicles a kind of soap bubbles that like cells are surrounded by membranes. The researchers made vesicles of different sizes in the laboratory and tested how different types of proteins bound to the vesicle membrane. They observed that the smaller the size of the vesicle, and more curved the membrane, the higher the number of cracks available and therefore the greater the number of proteins that can be bound pr. surface area.

- The moment we understood that the most critical parameter in our observations was membrane-shape we immediately thought that maybe we found a general mechanism that would apply to many other types of proteins apart from the ones we were studying. So we tested G proteins that are important signalling proteins attached to the membrane in a different way, using a lipid anchor. Our data confirmed that the model was indeed general, explains Vikram Bhatia, Nano-Science Center and Department of Nanoscience and Pharmacology.

- Unravelling the overarching importance of membrane-shape for the localization of literally hundreds of important signalling proteins will prove critical to our understanding of a plethora of biological process many of which are directly linked to important diseases, emphasises Associate Professor Dimitrios Stamou.


'/>"/>

Contact: Dimitrios Stamou
stamou@nano.ku.dk
454-116-0468
University of Copenhagen
Source:Eurekalert

Related biology news :

1. UC Davis challenge produces a better air conditioner
2. 2000-year-old statue of an athlete sheds light on corrosion and other modern challenges
3. Carnegie Mellons Kris Matyjaszewski recieves EPAs Presidential Green Chemistry Challenge Award
4. Microfossils challenge prevailing views of the effects of Snowball Earth glaciations on life
5. The challenges of avian influenza virus: Mechanism, epidemiology and control
6. Association for Molecular Pathology joins ACLU to challenge gene patents
7. SRI International receives $100,000 Grand Challenges Explorations grant
8. Winners announced in the Elsevier Grand Challenge
9. Major international study challenges notions of how genes are controlled in mammals
10. Climate change: Global risks, challenges and decisions
11. Y chromosome and surname study challenges infidelity myth
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/30/2017)...   Invitae Corporation (NYSE: NVTA ... today announced that it will report its fourth quarter ... on Monday, February 13, 2017, and Invitae,s management team ... p.m. Eastern / 1:45 p.m. Pacific. ... financial results, guidance, and recent developments and will spend ...
(Date:1/24/2017)... , Jan. 24, 2017  It sounds ... baby,s sock that monitors vital signs and alerts ... an infant,s oxygen saturation level drops. But pediatric ... alarm to parents, with no evidence of medical ... devices are marketed aggressively to parents of healthy ...
(Date:1/18/2017)... 2017  In vitro diagnostic (IVD) companies were very ... (M&A), and Kalorama Information expects that trend to continue ... shifting. Generally, uncertainty in reimbursement and healthcare reform in ... changed the acquisitions landscape. Instead of looking to buy ... partners outside of their home country and also to ...
Breaking Biology News(10 mins):
(Date:2/24/2017)... 24, 2017  VWR Corporation (NASDAQ: VWR), the leading global ... production customers, today reported its financial results for the fourth ... Highlights: 4Q16 record quarterly net sales ... an organic basis. 4Q16 EMEA-APAC ... basis, while the Americas net sales increased 2.5%, or down ...
(Date:2/23/2017)... 23, 2017 ... per share data, unaudited)Three Months Ended December 31,Twelve Months ... $         ...   89026%Aldurazyme Net Product Revenue ... Net Product Revenue  756025%297303(2)%Vimizim Net ...
(Date:2/23/2017)... Calif. , Feb. 23, 2017  MIODx ... license for two key immunotherapy technologies from the ... technology provides a method to monitor a patient ... as PD-L1 and CTLA-4.  The second license extends ... a patient is likely to have an immune-related ...
(Date:2/23/2017)... 23, 2017  Imanis Life Sciences announced today ... oncolytic vaccinia viruses for virotherapy research. These viruses ... Genelux,s proprietary, vaccinia virus-based technology platform for research ... into a partnership with Genelux to offer researchers, ... for use in research," said Dr. Kah ...
Breaking Biology Technology: