Navigation Links
Nanoresearchers challenge dogma in protein transportation in cells
Date:9/21/2009

- We now begin to understand how signalling proteins recognize and transport to certain areas of the cell and get a more clear insight on the mechanism of major cellular processes such as cell signalling and growth. This valuable knowledge could be used in the future to understand and cure disease such as depression and Alzheimer's explains Associate Professor Dimitrios Stamou, Nano-Science Center and Department of Neuroscience and Pharmacology, who led the work.

Cells depend critically on their ability to selectively, transport and isolate proteins in specific areas. Earlier ideas that proposed proteins to move around in the cell by recognizing nanoscale patches in their surrounding membrane, also called lipid rafts, are currently under intense debate. However researchers from Nano-Science Center found a new unsuspected mechanism based on the shape of the membrane and just had their results published in the prominent scientific journal Nature Chemical Biology.

Attractive curves on the nanoscale

Like all other materials, cell membranes will crack when bend. Membranes however show a unique property: bending them more and more does not create bigger cracks but simply many more cracks of the same size. It turns out certain important proteins "like" to bind in these cracks therefore the curved parts of a membrane become a good place for them to "meet" each other and thus perform the complicated tasks that need many different proteins working side by side.

- We were very surprised that it is the number of cracks in the membrane that determines how many proteins are bound. Up until now researchers in the field thought that the crucial element was the proteins ability and "desire" to bind to the membrane, also called the affinity. Our data speaks against that, explains Nikos Hatzakis, Nano-Science Center and Department of Chemistry.

The model is general

In cells proteins are travelling around in small vesicles a kind of soap bubbles that like cells are surrounded by membranes. The researchers made vesicles of different sizes in the laboratory and tested how different types of proteins bound to the vesicle membrane. They observed that the smaller the size of the vesicle, and more curved the membrane, the higher the number of cracks available and therefore the greater the number of proteins that can be bound pr. surface area.

- The moment we understood that the most critical parameter in our observations was membrane-shape we immediately thought that maybe we found a general mechanism that would apply to many other types of proteins apart from the ones we were studying. So we tested G proteins that are important signalling proteins attached to the membrane in a different way, using a lipid anchor. Our data confirmed that the model was indeed general, explains Vikram Bhatia, Nano-Science Center and Department of Nanoscience and Pharmacology.

- Unravelling the overarching importance of membrane-shape for the localization of literally hundreds of important signalling proteins will prove critical to our understanding of a plethora of biological process many of which are directly linked to important diseases, emphasises Associate Professor Dimitrios Stamou.


'/>"/>

Contact: Dimitrios Stamou
stamou@nano.ku.dk
454-116-0468
University of Copenhagen
Source:Eurekalert

Related biology news :

1. UC Davis challenge produces a better air conditioner
2. 2000-year-old statue of an athlete sheds light on corrosion and other modern challenges
3. Carnegie Mellons Kris Matyjaszewski recieves EPAs Presidential Green Chemistry Challenge Award
4. Microfossils challenge prevailing views of the effects of Snowball Earth glaciations on life
5. The challenges of avian influenza virus: Mechanism, epidemiology and control
6. Association for Molecular Pathology joins ACLU to challenge gene patents
7. SRI International receives $100,000 Grand Challenges Explorations grant
8. Winners announced in the Elsevier Grand Challenge
9. Major international study challenges notions of how genes are controlled in mammals
10. Climate change: Global risks, challenges and decisions
11. Y chromosome and surname study challenges infidelity myth
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... , June 22, 2016 On Monday, the ... to industry to share solutions for the Biometric Exit ... Customs and Border Protection (CBP), explains that CBP intends ... departing the United States , in ... to defeat imposters. Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/9/2016)...  Perkotek an innovation leader in attendance control systems is proud to announce the ... employers to make sure the right employees are actually signing in, and to even ... ... ... ...
(Date:6/2/2016)... NEW YORK , June 2, 2016   The ... (Weather), is announcing Watson Ads, an industry-first capability in which ... advertising, by being able to ask questions via voice or ... Marketers have long ... with the consumer, that can be personal, relevant and valuable; ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... ... Supplyframe, the Industry Network for electronics hardware design and ... in Pasadena, Calif., the Design Lab’s mission is to bring together inventors and ... brought to market. , The Design Lab is Supplyframe’s physical representation of one ...
(Date:6/23/2016)... Apellis Pharmaceuticals, Inc. today announced positive ... its complement C3 inhibitor, APL-2. The trials were ... studies designed to assess the safety, tolerability, pharmacokinetics ... healthy adult volunteers. Forty subjects were ... dose (ranging from 45 to 1,440mg) or repeated ...
(Date:6/23/2016)... -- On Wednesday, June 22, 2016, the NASDAQ ... Dow Jones Industrial Average edged 0.27% lower to finish at ... Stock-Callers.com has initiated coverage on the following equities: Infinity Pharmaceuticals ... NKTR ), Aralez Pharmaceuticals Inc. (NASDAQ: ARLZ ... Learn more about these stocks by accessing their free trade ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... new line of intelligent tools designed, tuned and optimized exclusively for Okuma CNC ... in Chicago. The result of a collaboration among several companies with expertise in ...
Breaking Biology Technology: