Navigation Links
Nanoparticle-delivered 'suicide' genes slowed ovarian tumor growth
Date:7/29/2009

PHILADELPHIA Nanoparticle delivery of diphtheria toxin-encoding DNA selectively expressed in ovarian cancer cells reduced the burden of ovarian tumors in mice, and researchers expect this therapy could be tested in humans within 18 to 24 months, according to a report in Cancer Research, a journal of the American Association for Cancer Research.

Although early stage ovarian cancer can be treated with a combination of surgery followed by chemotherapy, there are currently no effective treatments for advanced ovarian cancer that has recurred after surgery and primary chemotherapy. Therefore, the majority of treated early stage cancers will relapse.

"This report is definitely a reason to hope. We now have a potential new therapy for the treatment of advanced ovarian cancer that has promise for targeting tumor cells and leaving healthy cells healthy," said lead researcher Janet Sawicki, Ph.D., a professor at the Lankenau Institute for Medical Research.

Sawicki and colleagues at the Massachusetts Institute of Technology evaluated the therapeutic efficacy of a cationic biodegradable beta-amino ester polymer as a vector for the nanoparticle delivery of a DNA encoding diphtheria toxin suicide gene. These nanoparticles were injected into mice with primary or metastatic ovarian tumors.

To test the efficacy of this technique, the researchers measured tumor volume before and after treatment. They found that while treated tumors increased 2-fold, this was significantly less than the between 4.1-fold and 6-fold increase in control mice.

Furthermore, four of the treated tumors failed to grow at all, while all control tumors increased in size. Administration of nanoparticles to three different ovarian cancer mouse models prolonged lifespan by nearly four weeks and suppressed tumor growth more effectively, and with minimal non-specific cytotoxicity, than in mice treated with clinically relevant doses of cisplatin and paclitaxel.

Edward Sausville, M.D., Ph.D., an associate editor of Cancer Research and associate director for clinical research at the Greenebaum Cancer Center at the University of Maryland, said this report illustrates significant progress in targeted therapy.

"In oncology we have been studying ways to kill tumors for a long time, but much of this has run up against the real estate principle of location, location, location," he said. "In other words, an effective therapy is not effective if it cannot get to the target."

Sausville said a major accomplishment of this research is the multiple ways it can target ovarian cancer cells, as scientists were able to deliver diphtheria toxin genes, using a nanoparticle, to the actual tumor site (peritoneum) with a basis for selective activity in the cancer cells (how the toxin genes were regulated once inside the cells).

"A real plus of a cancer therapy like this is not just the functionality of the nanoparticle construct molecule, but the ability to deliver the toxin to the tumor cells," said Sausville, who agrees that inception of clinical trials could be just 18 months away.


'/>"/>

Contact: Jeremy Moore
jeremy.moore@aacr.org
267-646-0557
American Association for Cancer Research
Source:Eurekalert

Related biology news :

1. Monitoring outcomes of suicide attempts in pregnancy can better assess drug dangers
2. Study identifies changes to DNA in major depression and suicide
3. Refusal of suicide order: Why tumor cells become resistant
4. Reprogramming human cells without inserting genes
5. Maternal, paternal genes tug-of-war may last well into childhood
6. Corrective genes closer thanks to enzyme modification
7. Hush little baby... Linking genes, brain and behavior in children
8. Mystery E. coli genes essential for survival of many species
9. Pitt team first to profile genes in acutely ill idiopathic pulmonary fibrosis patients
10. The tiny difference in the genes of bacteria
11. The tiny difference in the genes of bacteria
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2017)... The global military biometrics market ... by the presence of several large global players. The ... major players - 3M Cogent, NEC Corporation, M2SYS Technology, ... 61% of the global military biometric market in 2016. ... military biometrics market boast global presence, which has catapulted ...
(Date:4/17/2017)... -- NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or ... 2016 Annual Report on Form 10-K on Thursday April 13, 2017 ... ... Investor Relations section of the Company,s website at http://www.nxt-id.com  under ... http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/13/2017)... India , April 13, 2017 According to ... Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, ... MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 Billion ... Growth Rate (CAGR) of 17.3%. ... MarketsandMarkets ...
Breaking Biology News(10 mins):
(Date:8/15/2017)... ... 15, 2017 , ... Kenall, a leader in sealed solid-state ... tightly sealed and perform efficiently for years. The downlights are ideal for a ... enough, such as: hospitals; behavioral health facilities; cleanrooms; containment areas; food and pharmaceutical ...
(Date:8/14/2017)... Oregon (PRWEB) , ... August 14, 2017 , ... ... that provide essential device-to-computer interconnect using USB or PCI Express, announced the release ... , SYZYGY is intended to satisfy the need for a compact, low cost, ...
(Date:8/11/2017)... ... August 11, 2017 , ... “There is ... more natural alternatives to synthetic ingredients,” said Matt Hundt, President of Third Wave ... established manufacturing presence and know-how of Biorigin will allow us to bring truly ...
(Date:8/10/2017)... ... August 09, 2017 , ... Okyanos Center for Regenerative ... at the Pelican Bay Hotel in Freeport, Grand Bahama on September 27, 2017. This ... , With oversight from the Ministry of Health’s National Stem Cell Ethics Committee ...
Breaking Biology Technology: