Navigation Links
Nanomodified surfaces seal leg implants against infection
Date:3/22/2011

PROVIDENCE, R.I. [Brown University] In recent years, researchers have worked to develop more flexible, functional prosthetics for soldiers returning home from battlefields in Afghanistan or Iraq with missing arms or legs. But even new prosthetics have trouble keeping bacteria from entering the body through the space where the device has been implanted.

"You need to close (the area) where the bacteria would enter the body, and that's where the skin is," said Thomas Webster, associate professor of engineering and orthopaedics at Brown University.

Webster and a team of researchers at Brown may have come across the right formula to deter bacterial migrants. The group reports two ways in which it modified the surface of titanium leg implants to promote skin cell growth, thereby creating a natural skin layer and sealing the gap where the device has been implanted into the body. The researchers also created a molecular chain to sprinkle skin-growing proteins on the implant to hasten skin growth.

The findings are published in the Journal of Biomedical Materials Research A.

The researchers, including Melanie Zile, a Boston University student who worked in Webster's lab as part of Brown's Undergraduate Teaching and Research Awards program, and Sabrina Puckett, who earned her engineering doctorate last May, created two different surfaces at the nanoscale, dimensions less than a billionth of a meter.

In the first approach, the scientists fired an electron beam of titanium coating at the abutment (the piece of the implant that is inserted into the bone), creating a landscape of 20-nanometer mounds. Those mounds imitate the contours of natural skin and trick skin cells into colonizing the surface and growing additional keratinocytes, or skin cells.

Webster knew such a surface, roughened at the nanoscale, worked for regrowing bone cells and cartilage cells, but he was unsure whether it would be successful at growing skin cells. This may be the first time that a nanosurface created this way on titanium has been shown to attract skin cells.

The second approach, called anodization, involved dipping the abutment into hydrofluoric acid and giving it a jolt of electric current. This causes the titanium atoms on the abutment's surface to scurry about and regather as hollow, tubular structures rising perpendicularly from the abutment's surface. As with the nanomounds, skin cells quickly colonize the nanotubular surface.

In laboratory (in vitro) tests, the researchers report nearly a doubling of skin cell density on the implant surface; within five days, the keratinocyte density reached the point at which an impermeable skin layer bridging the abutment and the body had been created.

"You definitely have a complete layer of skin," Webster said. "There's no more gap for the bacteria to go through."

To further promote skin cell growth around the implant, Webster's team looked to FGF-2, a protein secreted by the skin to help other skin cells grow. Simply slathering the abutment with the proteins doesn't work, as FGF-2 loses its effect when absorbed by the titanium. So the researchers came up with a synthetic molecular chain to bind FGF-2 to the titanium surface, while maintaining the protein's skin-cell growing ability. Not surprisingly, in vitro tests showed the greatest density of skin cells on abutment surfaces using the nanomodified surfaces and laced with FGF-2. Moreover, the nanomodified surfaces create more surface area for FGF-2 proteins than would be available on traditional implants.

The next step is to perform in vivo studies; if they are successful, human trials could begin, although Webster said that could be years away.


'/>"/>

Contact: Richard Lewis
Richard_Lewis@brown.edu
401-863-3766
Brown University
Source:Eurekalert  

Related biology news :

1. NIST-Cornell team builds worlds first nanofluidic device with complex 3-D surfaces
2. EPAs new green parking lot allows scientists to study permeable surfaces that may help the environment
3. Fly eye paves the way for manufacturing biomimetic surfaces
4. Researchers design artificial cells that could power medical implants
5. TECNALIA investigates advanced biomaterials to make more reliable and hardwearing medical implants
6. Implants mimic infection to rally immune system against tumors
7. A step toward better brain implants using conducting polymer nanotubes
8. Smart coating opens door to safer hip, knee and dental implants
9. New material mimics bone to create better biomedical implants
10. Smart orthopedic implants and self-fitting tissue scaffolding created by UMMS researchers
11. Technique yields potential biological substitute for dental implants
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Nanomodified surfaces seal leg implants against infection
(Date:2/3/2016)... 4, 2016 --> --> ... M (105.0), up 1,187% compared with fourth quarter of 2014. ... 517.6 M (loss: 30.0). Earnings per share increased to SEK ... 537.4 M (neg: 74.7). , --> ... to SEK 2,900.5 M (233.6), up 1,142% compared with 2014. ...
(Date:2/2/2016)... , Feb. 2, 2016 This BCC ... bioinformatic market by reviewing the recent advances in ... that drive the field forward. Includes forecast through ... Identify the challenges and opportunities that exist in ... software solution developers, as well as IT and ...
(Date:2/1/2016)... February 1, 2016 Rising sales ... drive global touchfree intuitive gesture control market ... Rising sales of consumer electronics coupled with new technological ... size through 2020   ... with new technological advancements to drive global touchfree intuitive ...
Breaking Biology News(10 mins):
(Date:2/9/2016)... ... February 09, 2016 , ... Tunnell Consulting, Inc. announced that Frédéric Lefebvre ... will focus on acquiring new accounts and work closely with existing Tunnell clients throughout ... brings to our European clients more than 15 years of experience in the pharmaceutical ...
(Date:2/9/2016)... NJ (PRWEB) , ... February 09, 2016 , ... ... Dorman, former Vice President for Public Policy for the National Organization for Rare ... patient advocacy groups to ensure their voices are heard throughout the drug regulatory ...
(Date:2/9/2016)... and LONDON , February 9, 2016 /PRNewswire/ ... tech replace paper and protect IP   ... laboratory notebook (ELN) will be rolled out in ... and development (R&D) and protect valuable IP. Users will be ... a specific researcher or experiment as part of the application, ...
(Date:2/9/2016)... 9, 2016 DelveInsight,s, ... report provides in depth insights on the ... the Protein-Tyrosine Phosphatase 1B (PTP1B) Inhibitors. The ... various stages of development including Discovery, Pre-clinical, ... and Preregistration. Report covers the product clinical ...
Breaking Biology Technology: