Navigation Links
Nanomedicines' impact on patients under the microscope
Date:5/29/2013

A pioneering imaging technique to track the effects of next-generation nanomedicines on patients has been harnessed by a University of Strathclyde academic.

Professor Dr. M. N. V. Ravi Kumar and Dr. Dimitrios Lamprou, of the Strathclyde Institute of Pharmacy and Biomedical Sciences, believe an advanced form of atomic force microscopy, known as PeakForce QNM, could boost developments in the field of nanomedicines, the encapsulation of potent drugs in tiny particles measuring billionths of a meter in diameter. They described how this detailed imaging approach may also help scientists address growing concerns in the medical world around "nanotoxicology", the build-up of microscopic particles in people's tissues.

Professor Kumar, whose team's research article has been published in the journal PLOS ONE, said: "Nanotechnology's role in drug delivery has the power to transform the way patients are given medicines over the next decade or so.

"In the case of traditional medicines, such as tablets and capsules, only a limited amount of drug thought to be around five to 15 per cent for the majority of compounds makes it through the gut into patients' blood. The good thing about nanomedicines is that unlike as is the case with traditional tablets and capsules the drugs are not released in the gut. Instead, nanomedicines are absorbed intact and release the encapsulated drugs directly into bodily tissues, including the blood, offering the possibility to reduce the required dose without compromising the therapeutic effects.

"All medicines are combined with what are known as 'excipients' inactive substances which give them the desired bulk and consistency and their role is restricted to the gut. However, the excipients such as polymers, used to formulate the nanoparticle-encapsulating drugs may exhibit undesired effects when they are absorbed through the gut wall. Scientists want to know if nanoparticle-based drugs can have any adverse effects on patients and, in particular, if they cause more harm than good in some cases.

"Up until now, little has been known about what happens after nanoparticles circulate throughout the body and if they raise any safety issues for the patient. Previously, it was necessary for nanoparticles to be given a fluorescent or radioactive label, in order to allow scientists to be able to identify and track them. However, by using PeakForce QNM atomic force microscopy we can, for the first time, track where these nanoparticles are going throughout the body after oral administration without attaching any fluorescent or radioactive labels and by using the real drug loaded nanoparticles. In particular, we can identify if they are accumulating in specific areas, causing what is known as 'tissue stiffness' a condition linked to a variety of diseases, including cancer."

Professor Kumar said it is known that tumours are more rigid or stiff when compared with surrounding healthy tissues. In addition, recent studies using atomic force microscopy have also shown it is possible to distinguish between non-malignant and malignant tumours cells, on the basis of their relative stiffness.

Professor Kumar added: "The ability of atomic force microscopy to study biomechanical profiles will be an asset in efforts to better understand the difference in tissue stiffness between tissues treated with nanoparticles and those not treated with nanoparticles, how long any associated tissue stiffness persists, and if it disappears quickly. Importantly, it will also help to establish whether or not there is a correlation between the number of nanoparticles present in blood and their accumulation in other tissues. By understanding more about blood stiffness, we will be able to learn more about nanotoxicology generally, and how that affects patients.

"By using atomic force microscopy in this way, we may in future be able to analyse patients' blood and tell if, for example, nanomaterials are accumulating in their livers or arterial walls, causing stiffness which if it persists long enough may increase their chances of developing diseases.

"Another benefit of nanoparticles is that if used at an early stage of the research they could save pharmaceutical firms money by reducing the number of drugs that fail at the development stage. These cost savings could then be reinvested into the research and development of new drugs to treat patients."


'/>"/>
Contact: Corporate Communications
corporatecomms@strath.ac.uk
44-014-154-82370
University of Strathclyde
Source:Eurekalert

Related biology news :

1. New study will help protect vulnerable birds from impacts of climate change
2. Study jointly led by UCSB researcher supports theory of extraterrestrial impact
3. Research on flavanols and procyanidins provides new insights into how these phytonutrients may positively impact human health
4. Study by Haverford College professor reveals unprecedented impact of Deepwater Horizon on deep ocean
5. New UH lecture series examines impact of science on health
6. Impact of warming climate doesnt always translate to streamflow
7. Large international study finds memory in adults impacted by versions of 4 genes
8. Fracking and Health Impact Assessments -- IOM hosts workshop April 30 and May 1
9. Selenium impacts honey bee behavior and survival
10. NASA satellite measurements imply Texas wind farm impact on surface temperature
11. A small cut with a big impact
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/9/2017)... VIEW, Calif. , March 9, 2017 ... 23andMe , the leading personal genetics company, are using ... now provide customers with personalized nutrition plans that consider ... but also genetic markers impacting how their body may ... food decision support platform uses biometrics such as Body ...
(Date:3/2/2017)... , March 2, 2017 Summary This ... Perrigo and its partnering interests and activities since 2010. ... Read the ... and Alliance since 2010 report provides an in-depth insight into ... sciences companies. On demand company reports are prepared ...
(Date:3/1/2017)... , March 1, 2017  Aware, Inc. (NASDAQ: ... announced that Richard P. Moberg has resigned, ... co-President and Chief Financial Officer and Treasurer of Aware ... to serve as a member of the Board of ... , Aware,s co-Chief Executive Officer and co-President, General Counsel ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... Research and Markets has announced the ... to their offering. ... The Global Market for Bioproducts Should Reach ... a CAGR of 8.9%, This research report ... seven major product segments: bio-derived chemicals, biofuels, pharmaceuticals (biodrugs and ...
(Date:3/23/2017)... , March 23, 2017  SeraCare Life ... global in vitro diagnostics manufacturers and clinical ... industry,s first multiplexed Inherited Cancer reference ... by next-generation sequencing (NGS). The Seraseqâ„¢ Inherited ... with input from industry experts to validate ...
(Date:3/23/2017)... 23, 2017  BioPharmX Corporation (NYSE MKT: BPMX), ... dermatology market, today reported financial results for the ... will provide an update on the company,s clinical ... "We are pleased to report that last ... said President Anja Krammer. "We achieved key clinical ...
(Date:3/23/2017)... 2017 Kineta, Inc., a biotechnology company ... in immuno-oncology, today announced the discovery and characterization ... that activate interferon response factor 3 (IRF3) via ... tumor regression in a murine colon carcinoma mouse ... complete tumor regression to initial drug treatment were ...
Breaking Biology Technology: