Navigation Links
'Nanodrop' test tubes created with a flip of a switch
Date:4/15/2008

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a new device that creates nanodroplet test tubes for studying individual proteins under conditions that mimic the crowded confines of a living cell. By confining individual proteins in nanodroplets of water, researchers can directly observe the dynamics and structural changes of these biomolecules, says physicist Lori Goldner, a coauthor of the paper* published in Langmuir.

Researchers recently have turned their attention to the role that crowding plays in the behavior of proteins and other biomoleculesthere is not much extra space in a cell. NISTs nanodroplets can mimic the crowded environment in cells where the proteins live while providing advantages over other techniques to confine or immobilize proteins for study that may interfere with or damage the protein. This more realistic setting can help researchers study the molecular basis of disease and supply information for developing new pharmaceuticals. For example, misfolded proteins play a role in many illnesses including Type 2 diabetes, Alzheimers and Parkinsons diseases. By seeing how proteins fold in these nanodroplets, researchers may gain new insight into these ailments and may find new therapies.

The NIST nanodroplet delivery system uses tiny glass micropipettes to create tiny water droplets suspended in an oily fluid for study under a microscope. An applied pressure forces the water solution containing protein test subjects to the tip of the micropipette as it sits immersed in a small drop of oil on the microscope stage. Then, like a magician whipping a tablecloth off a table while leaving the dinnerware behind, an electronic switch causes the pipette to jerk back, leaving behind a small droplet typically less than a micrometer in diameter.

The droplet is held in place with a laser optical tweezer, and another laser is used to excite fluorescence from the molecule or molecules in the droplet. In one set of fluorescence experiments, explains Goldner, The molecules seem unperturbed by their confinementthey do not stick to the walls or leave the containerimportant facts to know for doing nanochemistry or single-molecule biophysics. Similar to a previous work (see Micro-boxes of Water Used to Study Single Molecules, Tech Beat July 20, 2006), researchers also demonstrated that single fluorescent protein molecules could be detected inside the droplets.

Fluorescence can reveal the number of molecules within the nanodroplet and can show the motion or structural changes of the confined molecule or molecules, allowing researchers to study how two or more proteins interact. By using only a few molecules and tiny amounts of reagents, the technique also minimizes the need for expensive or toxic chemicals.


'/>"/>

Contact: Evelyn Brown
evelyn.brown@nist.gov
301-975-5661
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Tiny tubes and rods show promise as catalysts, sunscreen
2. Using nanotubes to detect and repair cracks in aircraft wings, other structures
3. Another type of nanotube, a how-to guide to making bamboo-structured carbon nanotubes
4. Using carbon nanotubes to seek and destroy anthrax toxin and other harmful proteins
5. Newly created cancer stem cells could aid breast cancer research
6. Natural insecticide re-created in the lab
7. Worlds largest marine protected area created in Pacific Ocean
8. Needle-size device created to track tumors, radiation dose
9. Switching goals
10. Researchers find signal that switches on eye development -- could lead to eye in a dish
11. Researchers identify how to switch off cancer cell genes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
'Nanodrop' test tubes created with a flip of a switch
(Date:1/25/2016)... BLUE BELL, Pa. , Jan. 25, 2016   Unisys ... facial recognition system at John F. Kennedy (JFK) International Airport, ... and Border Protection (CBP) identify imposters attempting to enter ... or do not belong to them. pilot testing ... rolled out initially at three terminals at JFK during January 2016. ...
(Date:1/20/2016)... , Jan. 20, 2016 A market that ... directly benefit from the explosion in genomics knowledge. Learn ... Sound Research. A range of dynamic trends are pushing ... - personalized medicine - pharmacogenomics - pathogen evolution - ... large markets - greater understanding of the role of ...
(Date:1/13/2016)... 2016 --> ... market report titled - Biometric Sensors Market - Global Industry ... 2023. According to the report, the global biometric sensors market was valued ... reach US$1,625.8 mn by 2023, expanding at a CAGR ... volume, the biometric sensors market is expected to reach ...
Breaking Biology News(10 mins):
(Date:2/6/2016)... ... February 06, 2016 , ... The Center for Excellence in Education (CEE) ... school teachers on Wednesday February 10, 2016. This Bite of Science session, hosted ... Conservation, located at 1500 Remount Road in Front Royal, VA from 5:00 p.m. to ...
(Date:2/5/2016)... , Feb. 5, 2016 On Thursday, February ... information source for community, health and disaster services, and ... will integrate to enhance care coordination and service delivery ... services they need and to better connect service providers ... San Diego has handled ...
(Date:2/4/2016)... LEXINGTON, Massachusetts , February 4, 2016 - New ... --> - New FDA action date of July ... date of July 22, 2016   - ... the U.S. in the past decade indicated for the treatment of signs and ... Lifitegrast has the potential to be the only product approved in the ...
(Date:2/4/2016)... SHENZHEN, China , Feb. 4, 2016 ... government, and various medical institutions attended a ceremony in ... provide integrative, personalized cell therapy in 2016. ... the "Shenzhen Clinical Translation Platform for Personalized Cell Therapy" ... Shenzhen Regional Cell Production Center, both subsidiaries of Beike ...
Breaking Biology Technology: