Navigation Links
'Nanodrop' test tubes created with a flip of a switch
Date:4/15/2008

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a new device that creates nanodroplet test tubes for studying individual proteins under conditions that mimic the crowded confines of a living cell. By confining individual proteins in nanodroplets of water, researchers can directly observe the dynamics and structural changes of these biomolecules, says physicist Lori Goldner, a coauthor of the paper* published in Langmuir.

Researchers recently have turned their attention to the role that crowding plays in the behavior of proteins and other biomoleculesthere is not much extra space in a cell. NISTs nanodroplets can mimic the crowded environment in cells where the proteins live while providing advantages over other techniques to confine or immobilize proteins for study that may interfere with or damage the protein. This more realistic setting can help researchers study the molecular basis of disease and supply information for developing new pharmaceuticals. For example, misfolded proteins play a role in many illnesses including Type 2 diabetes, Alzheimers and Parkinsons diseases. By seeing how proteins fold in these nanodroplets, researchers may gain new insight into these ailments and may find new therapies.

The NIST nanodroplet delivery system uses tiny glass micropipettes to create tiny water droplets suspended in an oily fluid for study under a microscope. An applied pressure forces the water solution containing protein test subjects to the tip of the micropipette as it sits immersed in a small drop of oil on the microscope stage. Then, like a magician whipping a tablecloth off a table while leaving the dinnerware behind, an electronic switch causes the pipette to jerk back, leaving behind a small droplet typically less than a micrometer in diameter.

The droplet is held in place with a laser optical tweezer, and another laser is used to excite fluorescence from the molecule or molecules in the droplet. In one set of fluorescence experiments, explains Goldner, The molecules seem unperturbed by their confinementthey do not stick to the walls or leave the containerimportant facts to know for doing nanochemistry or single-molecule biophysics. Similar to a previous work (see Micro-boxes of Water Used to Study Single Molecules, Tech Beat July 20, 2006), researchers also demonstrated that single fluorescent protein molecules could be detected inside the droplets.

Fluorescence can reveal the number of molecules within the nanodroplet and can show the motion or structural changes of the confined molecule or molecules, allowing researchers to study how two or more proteins interact. By using only a few molecules and tiny amounts of reagents, the technique also minimizes the need for expensive or toxic chemicals.


'/>"/>

Contact: Evelyn Brown
evelyn.brown@nist.gov
301-975-5661
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Tiny tubes and rods show promise as catalysts, sunscreen
2. Using nanotubes to detect and repair cracks in aircraft wings, other structures
3. Another type of nanotube, a how-to guide to making bamboo-structured carbon nanotubes
4. Using carbon nanotubes to seek and destroy anthrax toxin and other harmful proteins
5. Newly created cancer stem cells could aid breast cancer research
6. Natural insecticide re-created in the lab
7. Worlds largest marine protected area created in Pacific Ocean
8. Needle-size device created to track tumors, radiation dose
9. Switching goals
10. Researchers find signal that switches on eye development -- could lead to eye in a dish
11. Researchers identify how to switch off cancer cell genes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
'Nanodrop' test tubes created with a flip of a switch
(Date:6/16/2016)... FRANCISCO , June 16, 2016 ... size is expected to reach USD 1.83 ... by Grand View Research, Inc. Technological proliferation and ... banking applications are expected to drive the market ... ) , The development of advanced ...
(Date:6/7/2016)...  Syngrafii Inc. and San Antonio Credit Union ... integrating Syngrafii,s patented LongPen™ eSignature "Wet" solution into ... result in greater convenience for SACU members and ... existing document workflow and compliance requirements. ... Highlights: ...
(Date:6/2/2016)... LONDON , June 2, 2016 ... Systems, Manned Platforms, Unmanned Systems, Physical Infrastructure, Support & ... intelligence provider visiongain offers comprehensive analysis of ... that this market will generate revenues of $17.98 billion ... Systems acquired DVTEL Inc, a leader in software and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , ... announced today the Clinical Reach Virtual Patient Encounter CONSULT module which enables ... the physician and clinical trial team. , Using the CONSULT module, patients and physicians ...
(Date:6/27/2016)... -- Liquid Biotech USA , Inc. ... Research Agreement with The University of Pennsylvania ("PENN") ... patients.  The funding will be used to assess ... outcomes in cancer patients undergoing a variety of ... to support the design of a therapeutic, decision-making ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader ... “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, ... providing practical tips, tools, and strategies for clinical researchers. , “The landscape of ...
Breaking Biology Technology: