Navigation Links
Nanocrystals reveal activity within cells
Date:6/16/2009

Researchers at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory have created bright, stable and bio-friendly nanocrystals that act as individual investigators of activity within a cell.

These ideal light emitting probes represent a significant step in scrutinizing the behaviors of proteins and other components in complex systems such as a living cell.

Labeling a given cellular component and tracking it through a typical biological environment is fraught with issues: the probe can randomly turn on and off, competes with light emitting from the cell, and often requires such intense laser excitation, it eventually destroys the probe, muddling anything you'd be interested in seeing.

"The nanoparticles we've designed can be used to study biomolecules one at a time," said Bruce Cohen, a staff scientist in the Biological Nanostructures Facility at Berkeley Lab's nanoscience research center, the Molecular Foundry. "These single-molecule probes will allow us to track proteins in a cell or around its surface, and to look for changes in activity when we add drugs or other bioactive compounds."

Molecular Foundry post-doctoral researchers Shiwei Wu and Gang Han, led by Cohen, Imaging and Manipulation of Nanostructures staff scientist Jim Schuck and Inorganic Nanostructures Facility Director Delia Milliron, worked to develop nanocrystals containing rare earth elements that absorb low-energy infrared light and transform it into visible light through a series of energy transfers when they are struck by a continuous wave, near-infrared laser. Biological tissues are more transparent to near-infrared light, making these nanocrystals well suited for imaging living systems with minimal damage or light scatter.

"Rare earths have been known to show phosphorescent behavior, like how the old-style television screen glows green after you shut it off. These nanocrystals draw on this property, and are a million times more efficient than traditional dyes," said Schuck. "No probe with ideal single-molecule imaging properties had been identified to dateour results show a single nanocrystal is stable and bright enough that you can go out to lunch, come back, and the intensity remains constant."

To study how these probes might behave in a real biological system, the Molecular Foundry team incubated the nanocrystals with embryonic mouse fibroblasts, cells crucial to the development of connective tissue, allowing the nanocrystals to be taken up into the interior of the cell. Live-cell imaging using the same near-infrared laser showed similarly strong luminescence from the nanocrystals within the mouse cell, without any measurable background signal.

"While these types of particles have existed in one form or another for some time, our discovery of the unprecedented 'single-molecule' properties these individual nanocrystals possess opens a wide range of applications that were previously inaccessible," Schuck adds.


'/>"/>

Contact: Aditi Risbud
ASRisbud@lbl.gov
510-486-4861
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology news :

1. Childhood obesity indicates greater risk of school absenteeism, Penn study reveals
2. Study begins to reveal clues to the cause and progression of sepsis
3. Comet probes reveal evidence of origin of life, scientists claim
4. Structure of 450 million year old protein reveals evolutions steps
5. UF scientists reveal how dietary restriction cleans cells
6. Neural stem cell study reveals mechanism that may play role in cancer
7. New method reveals substances on surfaces of any kind
8. Study reveals predation-evolution link
9. IDEMA Reveals Program Highlights for DISKCON USA 2007
10. Study reveals possible genetic risk for fetal alcohol disorders
11. IDEMA Reveals Program Highlights for DISKCON USA 2007
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Nanocrystals reveal activity within cells
(Date:4/11/2017)... 2017 Research and Markets has announced the ... to their offering. ... eye tracking market to grow at a CAGR of 30.37% during ... Market 2017-2021, has been prepared based on an in-depth market analysis ... and its growth prospects over the coming years. The report also ...
(Date:4/5/2017)... April 5, 2017  The Allen Institute for Cell ... Explorer: a one-of-a-kind portal and dynamic digital window into ... data, the first application of deep learning to create ... cell lines and a growing suite of powerful tools. ... these and future publicly available resources created and shared ...
(Date:4/3/2017)... , April 3, 2017  Data ... precision engineering platform, detected a statistically significant ... product prior to treatment and objective response ... the potential to predict whether cancer patients ... to treatment, as well as to improve ...
Breaking Biology News(10 mins):
(Date:7/26/2017)... ... July 26, 2017 , ... NLP ... the years of diagnostic excellence by Mayo Clinic and the experience in developing ... will be distributed through the Microsoft Azure platform and will focus on assisting ...
(Date:7/26/2017)... , July 26, 2017  Nurse practitioners play a ... the findings of a Merck Manuals survey released ... medical conference, revealed that most (88 percent) believe they spend ... treatments and prescriptions. ... Merck Manuals survey of 210 nurse ...
(Date:7/25/2017)... ... July 25, 2017 , ... ... and improve efficiency of livestock farming while reducing the use of antibiotics and ... intellectual property from Cornell University. , These new proprietary technologies expand the ...
(Date:7/24/2017)... ... July 24, 2017 , ... ... US and Canada who have proven their superior service quality as rated by ... Staffing as an industry leader based on service quality ratings from their placed ...
Breaking Biology Technology: