Navigation Links
Nano fit-ness: Helping enzymes stay active and keep in shape

Troy, N.Y. Proteins are critically important to life and the human body. They are also among the most complex molecules in nature, and there is much we still don't know or understand about them.

One key challenge is the stability of enzymes, a particular type of protein that speeds up, or catalyzes, chemical reactions. Taken out of their natural environment in the cell or body, enzymes can quickly lose their shape and denature. Everyday examples of enzymes denaturing include milk going sour, or eggs turning solid when boiled.

Rensselaer Polytechnic Institute Professor Marc-Olivier Coppens has developed a new technique for boosting the stability of enzymes, making them useful under a much broader range of conditions. Coppens confined lysozyme and other enzymes inside carefully engineered nanoscale holes, or nanopores. Instead of denaturing, these embedded enzymes mostly retained their 3-D structure and exhibited a significant increase in activity.

"Normally, when you put an enzyme on a surface, its activity goes down. But in this study, we discovered that when we put enzymes in nanopores a highly controlled environment the enzymatic activity goes up dramatically," said Coppens, a professor in the Department of Chemical and Biological Engineering at Rensselaer. "The enzymatic activity turns out to be very dependent on the local environment. This is very exciting."

Results of the study are detailed in the paper, "Effects of surface curvature and surface chemistry on the structure and activity of proteins adsorbed in nanopores," published last month by the journal Physical Chemistry Chemical Physics. The paper may be viewed online at:

Researchers at Rensselaer and elsewhere have made important discoveries by wrapping enzymes and other proteins around nanomaterials. While this immobilizes the enzyme and often results in high stability and novel properties, the enzyme's activity decreases as it loses its natural 3-D structure.

Coppens took a different approach, and inserted enzymes inside nanopores. Measuring only 3-4 nanometers (nm) in size, the enzyme lysozyme fits snugly into a nanoporous material with well-controlled pore size between 5 nm and 12 nm. Confined to this compact space, the enzymes have a much harder time unfolding or wiggling around, Coppens said.

The discovery raises many questions and opens up entirely new possibilities related to biology, chemistry, medicine, and nanoengineering, Coppens said. He envisions this technology could be adapted to better control nanoscale environments, as well as increase the activity and selectivity of different enzymes. Looking forward, Coppens and colleagues will employ molecular simulations, multiscale modeling methods, and physical experiments to better understand the fundamental mechanics of confining enzymes inside nanopores.


Contact: Michael Mullaney
Rensselaer Polytechnic Institute

Related biology news :

1. Satellites helping aid workers in Honduras
2. Green IT not helping climate change
3. Energy experts helping Australian households reduce carbon emissions
4. Tennessee foresters helping to return chestnuts to American forests
5. Texas AgriLife researchers helping
6. New insights into helping marine species cope with climate change
7. Helping the NRC look below the surface
8. Helping hearts, spinal cords and tendons heal themselves
9. New psychological intervention program shows promise in helping those with bowel diseases
10. Helping the brains messengers get from A to B
11. Neutrons helping ORNL researchers unlock secrets to cheaper ethanol
Post Your Comments:
Related Image:
Nano fit-ness: Helping enzymes stay active and keep in shape
(Date:11/17/2015)... Paris , qui s,est tenu ... Paris , qui s,est tenu du 17 au ... l,innovation biométrique, a inventé le premier scanner couplé, qui ... même surface de balayage. Jusqu,ici, deux scanners étaient nécessaires, ... digitales. Désormais, un seul scanner est en mesure de ...
(Date:11/17/2015)... SOUTH EASTON, Mass. , Nov. 17, 2015 /PRNewswire/ ... "Company"), a leader in the development and sale of ... to the worldwide life sciences industry, today announced it ... closing of its $5 million Private Placement (the "Offering"), ... Offering to $4,025,000.  One or more additional closings are ...
(Date:11/12/2015)... Nov. 12, 2015  A golden retriever that stayed ... dystrophy (DMD) has provided a new lead for treating ... the Broad Institute of MIT and Harvard and the ... . Cell, pinpoints a protective ... the disease,s effects. The Boston Children,s lab of ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... SUNNYVALE, Calif. , Nov. 24, 2015 ... executives will be speaking at the following conference, and ... New York, NY      Tuesday, December 1, ... New York, NY      Tuesday, December 1, ...      Piper Jaffray Healthcare Conference, New York, NY ...
(Date:11/24/2015)... /CNW/ - iCo Therapeutics ("iCo" or "the Company") (TSX-V: ... the quarter ended September 30, 2015. Amounts, unless ... presented under International Financial Reporting Standards ("IFRS"). ... Andrew Rae , President & CEO of ... only value enriching for this clinical program, but ...
(Date:11/24/2015)... Florida (PRWEB) , ... November 24, 2015 , ... ... biggest event of the year and one of the premier annual events for ... and ran from 8–11 November 2015, where ISPE hosted the largest number of ...
(Date:11/24/2015)... 24, 2015  Clintrax Global, Inc., a worldwide provider of clinical ... today announced that the company has set a new quarterly earnings ... on quarter growth posted for Q3 of 2014 to Q3 of ... Mexico , with the establishment of an ... --> United Kingdom and Mexico ...
Breaking Biology Technology: