Navigation Links
Nailing down a crucial plant signaling system
Date:1/23/2011

Stanford, CA Plant biologists have discovered the last major element of the series of chemical signals that one class of plant hormones, called brassinosteroids, send from a protein on the surface of a plant cell to the cell's nucleus. Although many steps of the pathway were already known, new research from a team including Carnegie's Ying Sun and Zhiyong Wang fills in a missing gap about the mechanism through which brassinosteroids cause plant genes to be expressed. Their research, which will be published online by Nature Cell Biology on January 23, has implications for agricultural science and, potentially, evolutionary research.

"Brassinosteroids are found throughout the plant kingdom and regulate many aspects of growth and development, as well as resistance from external stresses," said Wang. "Mutant plants that are deficient in brassinosteroids show defects at many phases of the plant life cycle, including reduced seed germination, irregular growth in the absence of light, dwarfism, and sterility."

Previous research had identified a pathway of chemical signals that starts when a brassinosteroid binds to a receptor on the surface of a plant cell and activates a cascade of activity that consists of adding and removing phosphates from a series of proteins.

When brassinosteroids are not present, a protein in this pathway called BIN2 acts to add phosphates to two other proteins called BZR1 and BZR2, which are part of a special class of proteins called transcription factors. The phosphates inhibit the transcription factors. But when a brassinosteroid binds to the cell-surface receptor, BIN2 is deactivated, and as a result phosphates are removed from the two transcription factors. As a result, BZR1 and BZR2 can enter the cell's nucleus, where they bind directly to DNA molecules and promote a wide variety of gene activity.

Before this new research, the protein that detaches the phosphates and allows BZR1 and BZR2 to work was unknown. Using an extensive array of research techniques, the team was able to prove that a protein called protein phosphatase 2A (PP2A) is responsible.

"We discovered that PP2A is a key component of the brassinosteroid signaling pathway," Wang said. "This discovery completes the core signaling module that relays extracellular brassinosteroids to cue activity in the nucleus."

Further research is needed to determine whether brassinosteroid binding activates PP2A, or just deactivates BIN2, thus allowing PP2A to do this job. Additionally, PP2A is involved in a plant's response to gravity and light, among other things.

This aspect of the brassinosteroid signaling pathway bears some surprising resemblances to signaling pathways found in many members of the animal kingdom. More research could demonstrate details of the evolutionary split between non-protozoan animals and plants.


'/>"/>

Contact: Zhiyong Wang
zywang24@stanford.edu
650-739-4205
Carnegie Institution
Source:Eurekalert

Related biology news :

1. Hidden infections crucial to understanding, controlling disease outbreaks
2. Mayo researchers identify dangerous two-faced protein crucial to breast cancer spread and growth
3. In lung cancer, silencing one crucial gene disrupts normal functioning of genome
4. Simplicity is crucial to design optimization at nanoscale
5. Caffeic acid inhibits colitis in a mouse model -- is a drug-metabolizing gene crucial?
6. For HIV-infected children, quality of caregiver relationship is crucial
7. Crucial differences found among Latino populations facing heart disease risks
8. Vitamin D crucial to activating immune defenses
9. Payment Default Risks Remain a Crucial Issue for Businesses Across Europe
10. Formula discovered for longer plant life
11. Commercial aquatic plants offer cost-effective method for treating wastewater
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)... May 16, 2016   EyeLock LLC , a ... the opening of an IoT Center of Excellence in ... expand the development of embedded iris biometric applications. ... of convenience and security with unmatched biometric accuracy, making ... aside from DNA. EyeLock,s platform uses video technology to ...
(Date:5/3/2016)...  Neurotechnology, a provider of high-precision biometric identification ... Identification System (ABIS) , a complete system for ... can process multiple complex biometric transactions with high ... face or iris biometrics. It leverages the core ... MegaMatcher Accelerator , which have been used in ...
(Date:4/26/2016)... LONDON , April 26, 2016 /PRNewswire/ ... Systems, a product subsidiary of Infosys (NYSE: ... partnership to integrate the Onegini mobile security platform ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration ... security to access and transact across channels. Using ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... CLEVELAND , June 27, 2016  Global ... average 4.6 percent through 2020 to $7.2 billion.  ... (food and beverages, cleaning products, biofuel production, animal ... and biotechnology, diagnostics, and biocatalysts). Food and beverages ... gains driven by increasing consumption of products containing ...
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the leading software ... Clinical Reach Virtual Patient Encounter CONSULT module which enables both audio and ... clinical trial team. , Using the CONSULT module, patients and physicians can schedule a ...
(Date:6/27/2016)...   Ginkgo Bioworks , a leading organism ... today awarded as one of the World Economic ... most innovative companies. Ginkgo Bioworks is engineering biology ... world in the nutrition, health and consumer goods ... customers including Fortune 500 companies to design microbes ...
(Date:6/24/2016)... ... ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical journal articles ... findings are the subject of a new article on the Surviving Mesothelioma website. ... blood, lung fluid or tissue of mesothelioma patients that can help point doctors to ...
Breaking Biology Technology: