Navigation Links
NYU scientists set stage for understanding how color vision is processed
Date:3/25/2008

New York University biologists have mapped the medulla circuitry in fruit flies, setting the stage for subsequent research on how color vision is processed. The work, which appeared in the journal Current Biology, will allow future scholarship to explore how color vision is processed in the optic lobe of the fruit fly Drosophila, providing a paradigm for more complex systems in vertebrates.

The research was conducted by postdoctoral fellow Javier Morante and Professor Claude Desplan of NYUs Center for Developmental Genetics. The study was supported by a grant from the National Institutes of Health.

Eyes have been optimized to process maximum amounts of information by perceiving different parameters of the visual world and responding to them. The eyes can perform several major functions, from simple detection of light for clock synchronization to formation of images. The image of the environment formed by the optics of the eye on the retina is then transferred to brain processing centers. Both retina and brain processing centers have specialized morphology and function to achieve their various tasks.

In this study, the researchers studied processing of color vision, which requires comparison between photoreceptors that are sensitive to different wavelengths of light. They examined the fruit fly Drosophila. Genetic tools in fruit flies are extremely powerful and therefore allow for in depth analysis of neural circuits. In Drosophila, color vision is achieved by specialized photoreceptors that contain different rhodopsins, the photopigments that detect specific wavelengths of light and compare their output in the optic lobes.

Morante and Desplan reconstructed the neural network in Drosophilas medulla--the brain structure where color photoreceptors project--focusing on neurons likely to be involved in processing color vision. In this endeavor, they identified the full complement of neurons in the medulla. They also developed highly specific analytical tools that will allow scientists to functionally manipulate the network and test both activity and behavior.

Future experiments using our results will help reveal the exact function of the optic lobe cells in these complex circuits and to reach a better understanding of the mechanisms that govern the physiology of vision both in invertebrates and vertebrates, said Desplan.


'/>"/>

Contact: James Devitt
james.devitt@nyu.edu
212-998-6808
New York University
Source:Eurekalert

Related biology news :

1. Scientists launch human oral microbiome database
2. Yale scientists show that a microRNA can reduce lung cancer growth
3. Texas A&M scientists say early Americans arrived earlier
4. Scientists find color vision system independent of motion detection
5. Crop scientists discover gene that controls fruit shape
6. Scientists discover how TB develops invincibility against only available treatment
7. Scientists show that streams are critical to preservation of oceanic coastal zones
8. Scientists to discover why flamingos are in the pink of health -- in the poo!
9. Scientists believe photograph depicts wolverine in California
10. Scientists successfully treat new mouse model of inflammatory bowel disease
11. Genes hold the key to how happy we are, scientists say
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/3/2016)...  Neurotechnology, a provider of high-precision biometric identification ... Identification System (ABIS) , a complete system for ... can process multiple complex biometric transactions with high ... face or iris biometrics. It leverages the core ... MegaMatcher Accelerator , which have been used in ...
(Date:4/28/2016)... 2016 First quarter 2016:   ... with the first quarter of 2015 The gross margin ... (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... unchanged, SEK 7,000-8,500 M. The operating margin for 2016 ...
(Date:4/26/2016)... 2016 Research and Markets has ... Market 2016-2020"  report to their offering.  , ,     ... The analysts forecast the global multimodal biometrics market ... the period 2016-2020.  Multimodal biometrics is ... as the healthcare, BFSI, transportation, automotive, and government ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... -- Global demand for enzymes is forecast to grow ... billion.  This market includes enzymes used in industrial ... animal feed, and other markets) and specialty applications ... beverages will remain the largest market for enzymes, ... containing enzymes in developing regions.  These and other ...
(Date:6/27/2016)... NC (PRWEB) , ... June 27, 2016 , ... ... mission to bring innovative medical technologies, services and solutions to the healthcare market. ... and implementation of various distribution, manufacturing, sales and marketing strategies that are necessary ...
(Date:6/24/2016)... 2016 Epic Sciences unveiled a liquid ... to PARP inhibitors by targeting homologous recombination deficiency ... new test has already been incorporated into numerous ... types. Over 230 clinical trials are ... including PARP, ATM, ATR, DNA-PK and WEE-1. Drugs ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
Breaking Biology Technology: