Navigation Links
NYU Langone Medical Center researchers find micro RNA plays a key role in melanoma metastasis
Date:2/9/2009

NEW YORK CITY (February 5, 2009)Scientists have long wondered how melanoma cells travel from primary tumors on the surface of the skin to the brain, liver and lungs, where they become more aggressive, resistant to therapy, and deadly. Now, scientists from NYU Langone Medical Center have identified the possible culprita short strand of RNA called microRNA (miRNA) that is over-expressed in metastatic melanoma cell lines and tissues.

The new findings, published online this week and in the February 10, 2009 print edition of the Proceedings of the National Academy of Sciences (PNAS), suggest that miRNA silencing to counteract or attack this mechanism may be an effective therapeutic strategy for metastatic melanoma, according to Eva Hernando, Ph.D., assistant professor in the Department of Pathology at NYU School of Medicine, and the lead author of the study. Dr. Hernando is also a member of the NYU Cancer Institute at NYU Langone Medical Center.

The highly aggressive character of melanoma, says Dr. Hernando, makes it an excellent model to probe the mechanisms underlying metastasis, the process by which cancer cells travel from the primary tumor to distant sites in the body. Though other researchers have found that altered miRNAs contribute to breast cancer metastasis, this is the first study to examine the role of miRNA in metastatic melanoma.

"Melanoma becomes deadly after the cells leave the primary tumor through the blood and metastasize in other organs where they are resistant to therapy," says Dr. Hernando, who notes that the average survival for patients after melanoma metastasis occurs is only nine months. "Normal cells are unable to travel and survive in alien locations, so we are very interested in understanding the invasive, adaptive, and resistant traits of the very aggressive melanoma cell." miRNAs are short pieces of RNA that block the expression of proteins that are encoded by messenger RNAs. They serve as regulators of protein expression, acting like the volume control on a radio. In recent years, miRNAs have been linked to the over- or under-expression of a variety of genes linked to cancer and other diseases.

Dr. Hernando's lab found a miRNA is over-expressed in metastatic melanoma cell lines and tissues. The lab found that the elevated expression of miRNA 182 turns it into an oncogene (a gene involved in cancer tumor initiation or progression), by increasing the invasive capacity of melanoma cells in vitro and stimulating the cell's metastatic potential in a mouse model.

In addition, the NYU scientists found that miRNA 182 also represses the expression of two tumor suppressors called FOXO3 and MITF, which normally prevent cells from becoming malignant. By repressing the suppressors, miRNA 182 permits melanoma cells to migrate and survive independently, two properties necessary for metastasis.

MiRNA 182 also belongs to a cluster located in a genomic region, chromosome 7q, that is frequently amplified in melanoma and contains two other oncogenes; BRAF and C-MET. The study found a correlation between genomic amplification and miRNA over expression, though it is unclear whether other molecular mechanisms play a role in this effect, according to Dr. Hernando.

Finally, the scientists observed that in a significant fraction of metastatic melanomas, high miRNA 182 levels correlate with low levels of FOXO3 and MITF, supporting the relevance of this mechanism in human melanoma.

The study suggests that miRNA 182 is a novel therapeutic target. When it is inhibited, it impairs the invasive potential of melanoma cells and induces cell death. In theory, the administration of anti-miRNA 182 could block the growth or expansion of the primary melanoma tumor. Several academic laboratories and pharmaceutical companies are working to improve the delivery of anti-miRNAs by using chemical modification and nano particles to increase their stability, specificity, and ability to reach tumors in sufficient doses with low toxicity.

The NYU Cancer Institute is currently studying whether anti-miRNA will work on miRNA 182 to inhibit the growth or spread of primary melanoma in mice. Dr. Hernando says that even if the anti-miRNA cannot do this on its own, it might work in combination with conventional chemotherapy or novel targeted therapies.

This study is the result of an extensive collaboration between members of NYU's Interdisciplinary Melanoma Cooperative Group, led by Iman Osman, M.D. , one of the study's co-authors, which has a large biospecimen bank comprising human tissue, blood and patient clinico-pathological information.

"The existence of this bank permits us to validate our laboratory findings using human tissue," says Dr. Hernando. "In this study, we began looking at cell lines and then at melanoma tissue. Now that the mechanism has been proven using cell lines and mice, the next step will be to perform in-vitro studies with cell lines to assess the effect of anti-miRNA on cell death in both normal and melanoma cells. Once that study is completed, we can use this model for studies in mice to block the growth of the primary melanoma tumor or the metastasis by using anti-miRNA. All these steps will determine if this approach could be eventually applied to humans."


'/>"/>

Contact: Nadine Woloshin
nwoloshin@rubenstein.com
212-843-8041
NYU Langone Medical Center / New York University School of Medicine
Source:Eurekalert

Related biology news :

1. NYU Langone Medical Centers tip sheet to the International Conference on Alzheimers Disease 2008
2. Fluorescent proteins illuminating biomedical research
3. Texas Medical Center researchers win collaborative grants
4. Key to future medical breakthroughs is systems biology, say leading European scientists
5. First images from medical beamline at Canadian Light Source
6. Biomedical researchers create artificial human bone marrow in a test tube
7. University of Miami biomedical engineer
8. Biomedical research profits from the exploration of the deep sea
9. Biomedical engineers detective work reveals antibiotic mechanism
10. New book helps medical students master clinical skills
11. TECNALIA investigates advanced biomaterials to make more reliable and hardwearing medical implants
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/9/2016)... (NASDAQ: AWRE ), a leading supplier of biometrics software and ... ended December 31, 2015.  --> ... million, an increase of 61% compared to $4.3 million in the ... 2015 was $2.6 million compared to $0.2 million in the fourth ... Higher revenue and operating income in the fourth quarter of ...
(Date:2/3/2016)... -- --> --> Fourth quarter 2015: ... 1,187% compared with fourth quarter of 2014. Gross margin was ... 30.0). Earnings per share increased to SEK 6.39 (loss: 0.49). ... 74.7). , --> --> ... M (233.6), up 1,142% compared with 2014. Gross margin was ...
(Date:2/2/2016)... 2016 This BCC Research report provides ... reviewing the recent advances in high throughput ‘omic ... field forward. Includes forecast through 2019. ... and opportunities that exist in the bioinformatic market. ... as well as IT and bioinformatics service providers. ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... 11, 2016   BioInformant announces the February ... Research Products, Opportunities, Tools, and Technologies – Market Size, ... The first and ... cell industry, BioInformant has more than a decade of ... market, by stem cell type. This powerful 175 page ...
(Date:2/10/2016)... Early-career researchers from Indonesia , ... Uganda and Yemen honored ... Indonesia , Nepal , ... are being honored for their accomplishments in nutrition, psychiatry, biotechnology, ... young women scientists who are pursuing careers in agriculture, biology and medicine ...
(Date:2/10/2016)... Wash., Feb. 10, 2016  IsoRay, Inc. (NYSE MKT: ... brachytherapy and medical radioisotope applications for the treatment of ... today announced its financial results for the second quarter ... 31, 2015. --> ... quarter of fiscal 2016, which ended December 31, 2015, ...
(Date:2/10/2016)... ... ... LATHAM, NEW YORK... Marktech Optoelectronics will feature their new high-speed InGaAs ... Moscone Center from February 16-18, 2016, and at the healthcare-focused BiOS Expo on February ... standard packages feature a TO-46 metal can with active areas of 1.0mm and 1.5mm ...
Breaking Biology Technology: