Navigation Links
NYU Courant researchers develop algebraic model to monitor cellular change
Date:11/1/2010

Researchers at New York University's Courant Institute of Mathematical Sciences have developed a novel algebraic model of DNA "hybridization," a process central to most biotechnology devices that monitor changes in cell's gene expression or characterize a cell's genome. Their work, which is described in the journal Physical Review E, provides an additional tool for understanding how biological systems function and could enhance methods and designs of technologies used in cancer and genetics research.

Biology researchers seek to measure cell activity, but the task is a challenging one because of its complexitya cell has so many facets, all taking place simultaneously, that it is difficult to measure the behavior of its individual parts. Genes that do not necessarily affect each other inside a cell can disturb each others' measurements in a biotechnology device.

To get around these obstacles, the NYU researchers focused on how a cell's most basic components are measuredits DNA and RNA. Specifically, they used a cell's gene expressions as a "tagging system" to monitor cell behavior at its most fundamental level.

For this purpose, they focused on microarray technology in which researchers first gather data on the make-up of RNA molecules in two steps: RNA is first converted into cDNA, or "copy DNA," and then measured by hybridization.

However, the researchers' initial work involved not experiments, but, rather, the creation of mathematical models to predict "DNA-cDNA duplex formation." They developed an algebraic computation that allowed them to model arbitrary DNA-cDNA duplex formation, and, with it, measurements of cellular behavior. Specifically, they assigned to various chemical properties of DNA strands different algebraic values (e.g., "K," "X," "Y"). They then ran a series of computations that resulted in expressing how "matches" or "mismatches" among various strands of DNA can be characterized by the input algebraic variables. These computations could then be used directly to design the most accurate biotechnology for measuring cellular behavior.

To confirm the validity of these algebraic models, the researchers conducted laboratory experiments involving the hybridization of DNA sequences. These results largely confirmed those predicted by the mathematical modelsthe DNA sequences in the laboratory matched up in most instances in ways the models forecast.


'/>"/>

Contact: James Devitt
james.devitt@nyu.edu
212-998-6808
New York University
Source:Eurekalert

Related biology news :

1. NYU Courant professor wins NSFs Waterman Award
2. NC State researchers get to root of parasite genome
3. Researchers find animal with ability to survive climate change
4. Researchers find an essential gene for forming ears of corn
5. Researchers note differences between people and animals on calorie restriction
6. Researchers study acoustic communication in deep-sea fish
7. Researchers discover that growing up too fast may mean dying young in honey bees
8. Researchers study how pistachios may improve heart health
9. UI researchers find potentially toxic substance present in Chicago air
10. Researchers develop new self-training gene prediction program for fungi
11. Case Western Reserve University researchers track Chernobyl fallout
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... , June 2, 2016 Perimeter ... Platforms, Unmanned Systems, Physical Infrastructure, Support & Other Service  ... visiongain offers comprehensive analysis of the global ... market will generate revenues of $17.98 billion in 2016. ... DVTEL Inc, a leader in software and hardware technologies ...
(Date:5/12/2016)... WearablesResearch.com , a brand of Troubadour ... from the Q1 wave of its quarterly wearables survey. ... receptivity to a program where they would receive discounts ... company. "We were surprised to see that ... LaColla , CEO of Troubadour Research, "primarily because there ...
(Date:4/26/2016)... LONDON , April 26, 2016 ... a product subsidiary of Infosys (NYSE: ... to integrate the Onegini mobile security platform with ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration will ... to access and transact across channels. Using this ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 2016  Global demand for enzymes is forecast ... to $7.2 billion.  This market includes enzymes used ... biofuel production, animal feed, and other markets) and ... Food and beverages will remain the largest market ... of products containing enzymes in developing regions.  These ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... medical technologies, services and solutions to the healthcare market. The company's primary focus ... distribution, manufacturing, sales and marketing strategies that are necessary to help companies efficiently ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
Breaking Biology Technology: