Navigation Links
NUS-led research team discovers how bacteria sense salt stress
Date:7/9/2012

A team of scientists led by Assistant Professor Ganesh S Anand and Professor Linda J. Kenney from the National University of Singapore (NUS) Department of Biological Sciences (DBS) and the Mechanobiology Institute (MBI) has discovered how bacteria respond to salts in their environment and the ways in which salts can alter the behaviour of specialised salt sensor bacterial proteins.

This novel finding sheds light on how microbes detect levels of salts or sugars in their watery environments a problem in biology that has been studied for more than 30 years.

The NUS scientists found that microbes do this by specialised molecules or proteins on the bacterial surface that change shape in response to changes in salt concentration. This is relevant not only to bacteria, but also cells from all organisms which detect and respond to changes in environmental salts and sugars.

The scientists from NUS and the University of Illinois-Chicago (UIC) first published their findings in the EMBO Journal on 30 May 2012.

Salt detecting proteins are like springs

Bacteria have elaborate mechanisms for sensing and responding to changes in the environment. One of the important environmental stresses for bacteria is the changing concentration of salts. For instance, some can live in fresh water (a low salt environment) or in the guts of humans (high salt environment).

Using a powerful combination of a tool called amide hydrogen/deuterium exchange mass spectrometry (HDXMS), accompanied by molecular biology and biochemistry, the scientists from NUS probed how changes in salt concentrations are sensed by a receptor protein.

They found that salt detecting proteins are like molecular springs, or "slinky toys". The proteins are constantly shifting from a condensed spring form to an extended form. Increasing the salt concentration dampens this spring-like movement, which activates the protein. In other words, the less spring-like the protein, the higher is its activity. This protein movement may provide a unified model of how bacteria sense their environment.

Application of the phenomenon

This study is an example of basic science with immediate applications. Recognising that diverse proteins operate as molecular springs whose spring-like movement can be dampened is fundamental to understanding how these proteins work. This study also underscores the role of water in biology. It demonstrates how salts and sugars can alter biological properties of proteins through the effects on water and is relevant for understanding life processes across species from bacteria to humans.

Further research

The NUS research team is now working on studying the protein in its native membrane by embedding the bacterial sensor protein in an artificial membrane. They hope to understand how the membrane contributes to overall protein activity, structure, stability and responses to salts.


'/>"/>
Contact: Carolyn FONG
carolyn@nus.edu.sg
65-651-65399
National University of Singapore
Source:Eurekalert  

Related biology news :

1. Researchers discover molecule in immune system that could help treat dangerous skin cancer
2. Grant to allow graduate students to research water quantity and quality improvement
3. New research finds increased growth responsible for color changes in coral reefs
4. Special issue of Botany showcases CANPOLIN research
5. Hormones dictate when youngsters fly the nest, says new research
6. Patient-derived stem cells could improve drug research for Parkinsons
7. The EU underpays Madagascar for access to fish: UBC research
8. Researchers moving towards ending threat of West Nile virus
9. All Things Research 2012 roundtable discussion
10. The genomics symposium to boost the further development of cancer research
11. ASU receives prestigious $6.25 million multi-disciplinary research award from Department of Defense
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NUS-led research team discovers how bacteria sense salt stress
(Date:4/5/2017)... 2017  The Allen Institute for Cell Science today ... one-of-a-kind portal and dynamic digital window into the human ... first application of deep learning to create predictive models ... and a growing suite of powerful tools. The Allen ... future publicly available resources created and shared by the ...
(Date:3/30/2017)... March 30, 2017  On April 6-7, 2017, Sequencing.com ... Genome hackathon at Microsoft,s headquarters in ... will focus on developing health and wellness apps that ... Hack the Genome is the first hackathon for ... world,s largest companies in the genomics, tech and health ...
(Date:3/27/2017)... March 27, 2017  Catholic Health Services (CHS) ... Systems Society (HIMSS) Analytics for achieving Stage 6 ... sm . In addition, CHS previously earned a ... using an electronic medical record (EMR). ... level of EMR usage in an outpatient setting.  ...
Breaking Biology News(10 mins):
(Date:4/21/2017)... and BELLINGHAM, Washington, USA (PRWEB) , ... April ... ... technologies for sensing, imaging, and related applications were the focus of researchers, engineers, ... Commercial Sensing 2017 in Anaheim. , Sponsored by SPIE, the international ...
(Date:4/20/2017)... ... April 20, 2017 , ... As part of the ... patient cases when screening for direct oral anticoagulant. When patients taking direct oral ... bridging parental anticoagulation especially for those at high risk of thrombosis recurrence. ...
(Date:4/20/2017)... ... April 20, 2017 , ... Husson University ... research community’s growing body of knowledge during its Eighth Annual Research and ... the adjacent Darling Atrium. During the event, undergraduates, graduate students, and faculty members ...
(Date:4/20/2017)... ... 2017 , ... Parallel6™ , the leader in mClinical™ technologies for improving ... named one of the 2017 Top 10 eClinical Trial Management Solution Providers by ... , “We take pride in honoring Parallel6 as one of the top 10 companies ...
Breaking Biology Technology: