Navigation Links
NUS-led research team discovers how bacteria sense salt stress

A team of scientists led by Assistant Professor Ganesh S Anand and Professor Linda J. Kenney from the National University of Singapore (NUS) Department of Biological Sciences (DBS) and the Mechanobiology Institute (MBI) has discovered how bacteria respond to salts in their environment and the ways in which salts can alter the behaviour of specialised salt sensor bacterial proteins.

This novel finding sheds light on how microbes detect levels of salts or sugars in their watery environments a problem in biology that has been studied for more than 30 years.

The NUS scientists found that microbes do this by specialised molecules or proteins on the bacterial surface that change shape in response to changes in salt concentration. This is relevant not only to bacteria, but also cells from all organisms which detect and respond to changes in environmental salts and sugars.

The scientists from NUS and the University of Illinois-Chicago (UIC) first published their findings in the EMBO Journal on 30 May 2012.

Salt detecting proteins are like springs

Bacteria have elaborate mechanisms for sensing and responding to changes in the environment. One of the important environmental stresses for bacteria is the changing concentration of salts. For instance, some can live in fresh water (a low salt environment) or in the guts of humans (high salt environment).

Using a powerful combination of a tool called amide hydrogen/deuterium exchange mass spectrometry (HDXMS), accompanied by molecular biology and biochemistry, the scientists from NUS probed how changes in salt concentrations are sensed by a receptor protein.

They found that salt detecting proteins are like molecular springs, or "slinky toys". The proteins are constantly shifting from a condensed spring form to an extended form. Increasing the salt concentration dampens this spring-like movement, which activates the protein. In other words, the less spring-like the protein, the higher is its activity. This protein movement may provide a unified model of how bacteria sense their environment.

Application of the phenomenon

This study is an example of basic science with immediate applications. Recognising that diverse proteins operate as molecular springs whose spring-like movement can be dampened is fundamental to understanding how these proteins work. This study also underscores the role of water in biology. It demonstrates how salts and sugars can alter biological properties of proteins through the effects on water and is relevant for understanding life processes across species from bacteria to humans.

Further research

The NUS research team is now working on studying the protein in its native membrane by embedding the bacterial sensor protein in an artificial membrane. They hope to understand how the membrane contributes to overall protein activity, structure, stability and responses to salts.

Contact: Carolyn FONG
National University of Singapore

Related biology news :

1. Researchers discover molecule in immune system that could help treat dangerous skin cancer
2. Grant to allow graduate students to research water quantity and quality improvement
3. New research finds increased growth responsible for color changes in coral reefs
4. Special issue of Botany showcases CANPOLIN research
5. Hormones dictate when youngsters fly the nest, says new research
6. Patient-derived stem cells could improve drug research for Parkinsons
7. The EU underpays Madagascar for access to fish: UBC research
8. Researchers moving towards ending threat of West Nile virus
9. All Things Research 2012 roundtable discussion
10. The genomics symposium to boost the further development of cancer research
11. ASU receives prestigious $6.25 million multi-disciplinary research award from Department of Defense
Post Your Comments:
Related Image:
NUS-led research team discovers how bacteria sense salt stress
(Date:11/10/2015)... 10, 2015  In this report, the ... of product, type, application, disease indication, and ... report are consumables, services, software. The type ... biomarkers, efficacy biomarkers, and validation biomarkers. The ... diagnostics development, drug discovery and development, personalized ...
(Date:11/2/2015)... Calif. , Nov. 2, 2015  SRI International ... million to provide preclinical development services to the National ... contract, SRI will provide scientific expertise, modern testing and ... variety of preclinical pharmacology and toxicology studies to evaluate ... --> The PREVENT Cancer Drug Development Program ...
(Date:10/29/2015)... , Oct. 29, 2015  Connected health pioneer, ... driving the explosion of technology-enabled health and wellness, and ... new book, The Internet of Healthy Things ... sensors or smartphones even existed, Dr. Kvedar, vice president, ... of health care delivery, moving care from the hospital ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... November 27, 2015 ... popularity of companion diagnostics is one of ... market with pharmaceutical companies and diagnostic manufacturers ... tests. . --> ... report on global cancer biomarkers market spread ...
(Date:11/25/2015)... , Nov. 25, 2015  PharmAthene, Inc. (NYSE MKT: ... adopted a stockholder rights plan (Rights Plan) in an ... loss carryforwards (NOLs) under Section 382 of the Internal ... --> PharmAthene,s use of its NOLs could be ... as defined in Section 382 of the Code. In ...
(Date:11/25/2015)... , Nov. 25, 2015  Neurocrine Biosciences, Inc. ... Gorman , President and CEO of Neurocrine Biosciences, will ... Conference in New York . ... visit the website approximately 5 minutes prior to the ... replay of the presentation will be available on the ...
(Date:11/25/2015)... PORTLAND, Oregon , November 25, 2015 /PRNewswire/ ... Deep Market Research Report is a professional and ... Genomics industry.      (Logo: ... basic overview of the industry including definitions, classifications, ... analysis is provided for the international markets including ...
Breaking Biology Technology: