Navigation Links
NSF funds innovative approach to biomimetic nanofiber bone regeneration
Date:8/4/2010

Every year nearly 6.2 million bone fractures occur in the United States as a result of trauma and disease. Current standards for bone repair can lead to rapid bone fusion but with limited mechanical strength often due to the lack of cortical bone tissue which is difficult to harvest without pain and severe morbidity. Funded by the National Science Foundation, Dr. Hongjun Wang, a professor in the Department of Chemistry, Chemical Biology and Biomedical Engineering at Stevens Institute of Technology and his collaborators have developed a revolutionary "bottom-up" approach for reconstructing intricate bone tissue with the potential to form hierarchical cortical bone.

Dr. Wang's research project, "Biomimetic Creation of Cortical-like Bone with Hierarchical Structure," will develop robust, controllable and effective platforms for the creation of tissues with complex and hierarchical structure for potential applications in reconstructive and transplant surgery. Biomimetics is the study and development of synthetic systems that mimic the formation, function, or structure of biologically produced substances, materials, mechanisms and processes. Wang's research team is part of a thriving tissue engineering industry that uses a combination of cells, engineering and materials methods, and suitable biochemical and physio-chemical factors to repair or replace portions of damaged tissues. In contrast to current state-of-the-art research that focuses on creating highly porous cancellous bone, Dr. Wang focuses on engineering cortical bone, the major load bearing component. He takes a modular approach to generating dense cortical bone by synthesizing osteon-like repeating units and fusing these units together to form large, compacted cortical-like bone tissue. This "bottom-up" methodology uses nanotechnology to enable the development of scaffolds that focus on the smallest level possible and build upward. Incorporating nanofibers into bone tissue engineering to form the small cortical bone repeating units, these biomimetic scaffolds offer large surface areas and well-interconnected pores for nutrient transport and cell penetration, and more importantly, provide a biomimetic cell-friendly microenvironment to facilitate the bone tissue formation, needed for successful repair of large bone defects.

"The results of Dr. Wang's research will have a far‐reaching impact on tissue engineering," says Dr. Michael Bruno, Dean of the Schaefer School of Engineering and Science. "The wealth of basic and applied knowledge learned at Stevens will lay the foundation for our long‐term research efforts and the development of real-world applications."

Over the next three years, Dr. Wang's research team plan to make substantial strides in synergistically integrating nanobiomaterials with bone tissue engineering for the creation of cortical bone with hierarchical structure and functional complexity.

We hope to establish a family of biomimetic nanofibers containing collagen and calcium phosphate to support the phenotype of bone‐forming cells; new practical approaches to creating osteon‐like units using biomimetic nanofibers and osteoblasts; formulation of calcium phosphate containing collagen gel for bone tissue formation; and most importantly, an innovative approach to generating cortical‐like bone by assembling osteon‐like structures into one fused construct," explains Dr. Wang.

"The intellectually rich environment established by Dr. Wang and his team is inspiring to our graduate and undergraduate students who are participating in the transformative benefits of cutting-edge research and its profound application," says Dr. Philip Leopold, Director of the Department of Chemistry, Chemical Biology and Biomedical Engineering.

For more information on Stevens Pioneering Bone Regeneration research, please contact Dr. Wang: http://www.stevens.edu/research/research_profile.php?fac_id=16

Academics, Research & Entrepreneurship at Stevens Institute of Technology

Founded in 1870, Stevens Institute of Technology, The Innovation University, is dedicated to providing a unique learning curriculum, cutting-edge research and an infusion of entrepreneurial endeavors that prepare graduates for the professional workplace and support their capacity to nurture startups and the business development process.

Stevens offers baccalaureates, masters and doctoral degrees in engineering, science, computer science, systems engineering, business, technology and management as well as baccalaureate degrees in the humanities and liberal arts.

Please visit http://www.stevens.edu/sit/academics/index.cfm


'/>"/>
Contact: Dr. Hongjun Wang
Hongjun.Wang@stevens.edu
201-216-5556
Stevens Institute of Technology
Source:Eurekalert

Related biology news :

1. Gulf oil spill: NSF funds research on impacts to Florida Everglades
2. NSF funds Virginia Tech program to train researchers at intersection of engineering, biology
3. NIH funds multicenter glue grant to study enzyme function
4. California funds UCI basic research on stem cells
5. DOD funds tiny cave camera and iris recognition technology for military, homeland security
6. Apollo Solar Energy funds new $1.5 million CdTe solar research center at NJIT
7. UF gets almost $15 million in federal funds to build research complex to help older adults
8. Stand Up to Cancer funds high-risk/high-reward cancer research by 13 young scientists
9. NIGMS invests in scientific Grand Opportunities with Recovery Act funds
10. NIEHS awards Recovery Act funds to focus more research on health and safety of nanomaterials
11. NIEHS awards Recovery Act funds to address bisphenol A research gaps
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2017)... New York , April 19, 2017 ... competitive, as its vendor landscape is marked by the ... the market is however held by five major players ... Safran. Together these companies accounted for nearly 61% of ... of the leading companies in the global military biometrics ...
(Date:4/11/2017)... GARDENS, Fla. , April 11, 2017 /PRNewswire/ ... management and secure authentication solutions, today announced that ... by Intelligence Advanced Research Projects Activity (IARPA) to ... IARPA,s Thor program. "Innovation has been ... and IARPA,s Thor program will allow us to ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute ... Allen Cell Explorer: a one-of-a-kind portal and dynamic digital ... 3D imaging data, the first application of deep learning ... human stem cell lines and a growing suite of ... platform for these and future publicly available resources created ...
Breaking Biology News(10 mins):
(Date:5/24/2017)... ... May 23, 2017 , ... Federal funding for basic and applied scientific research ... medical and other vital technologies — deserves continued support, say leaders of SPIE, ... community today in responding to the President’s budget request for Fiscal Year 2018. , ...
(Date:5/23/2017)... ... 2017 , ... Firmex today announced the general ... for organizations to send and gather large files and confidential documents beyond the ... size limitations. , Using the same market-tested infrastructure as Firmex’s flagship Virtual ...
(Date:5/23/2017)... ... 2017 , ... Genedata, a leading provider of advanced software ... a strong presence at Bio-IT World Conference & Expo 2017 in Boston, MA. ... all attendees to view posters on the entire range of Genedata software ...
(Date:5/23/2017)... ... , ... Vortex Biosciences , provider of circulating tumor cell (CTC) capture ... using Vortex microfluidic technology ” in Nature Precision Oncology on May 8th. The ... and Dr. Matthew Rettig at the University of California, Los Angeles. The publication describes ...
Breaking Biology Technology: