Navigation Links
NOAA-led team measures atmosphere's self-cleaning capacity

An international, NOAA-led research team took a significant step forward in understanding the atmosphere's ability to cleanse itself of air pollutants and some other gases, except carbon dioxide. The issue has been controversial for many years, with some studies suggesting the self-cleaning power of the atmosphere is fragile and sensitive to environmental changes, while others suggest greater stability. And what researchers are finding is that the atmosphere's self-cleaning capacity is rather stable.

New analysis published online today in the journal Science shows that global levels of the hydroxyl radical, a critical player in atmospheric chemistry, do not vary much from year to year. Levels of hydroxyl, which help clear the atmosphere of many hazardous air pollutants and some important greenhouse gases but not carbon dioxide dip and rise by only a few percent every year; not by up to 25 percent, as was once estimated.

"The new hydroxyl measurements give researchers a broad view of the 'oxidizing' or self-cleaning capacity of the atmosphere," said Stephen Montzka, the study's lead author and a research chemist at the Global Monitoring Division of NOAA's Boulder, Colo., laboratory.

"Now we know that the atmosphere's ability to rid itself of many pollutants is generally well buffered or stable," said Montzka. "This fundamental property of the atmosphere was one we hadn't been able to confirm before."

The new finding adds confidence to projections of future air pollutant loads. The hydroxyl radical, comprised of one oxygen atom and one hydrogen atom, is formed and broken down so quickly in the atmosphere that it has been extremely difficult to measure on global scales.

"In the daytime, hydroxyl's lifetime is about one second and is present at exceedingly low concentrations," said Montzka. "Once created, it doesn't take long to find something to react with."

The radical is central to the chemistry of the atmosphere. It is involved in the formation and breakdown of surface-level ozone, a lung- and crop-damaging pollutant. It also reacts with and destroys the powerful greenhouse gas methane and air pollutants including hydrocarbons, carbon monoxide and sulfur dioxide. However, hydroxyl radicals do not remove carbon dioxide, nitrous oxide or chlorofluorocarbons.

To estimate variability in global hydroxyl levels and thus the cleansing capacity of the atmosphere researchers turned to studying longer-lived chemicals that react with hydroxyl.

The industrial chemical methyl chloroform, for example, is destroyed in the atmosphere primarily by hydroxyl radicals. By comparing levels of methyl chloroform emitted into the atmosphere with levels measured in the atmosphere, researchers can estimate the concentration of hydroxyl and how it varies from year to year.

This technique produced estimates of hydroxyl that swung wildly in the 1980s and 1990s. Researchers struggled to understand whether the ups and downs were due to errors in emissions estimates for methyl chloroform, for example, or to real swings in hydroxyl levels. The swings would be of concern: Large fluctuations in hydroxyl radicals would mean the atmosphere's self-cleaning ability was very sensitive to human-caused or natural changes in the atmosphere.

To complicate matters, when scientists tried to measure the concentration of hydroxyl radical levels compared to other gases, such as methane, they were seeing only small variations from year to year. The same small fluctuation was occurring when scientists ran the standard global chemistry models.

An international agreement helped resolve the issue. In response to the Montreal Protocol the international agreement to phase out chemicals that are destroying the Earth's protective stratospheric ozone layer production of methyl chloroform all but stopped in the mid 1990s. As a result, emissions of this potent ozone-depleting gas dropped precipitously.

Without the confounding effect of any appreciable methyl chloroform emissions, a more precise picture of hydroxyl variability emerged based on the observed decay of remaining methyl chloroform. The scientists studied hydroxyl radicals both by making measurements of methyl chloroform from NOAA's international cooperative air sampling program and also by modeling results with state-of-the-art models.

The group's findings improve confidence in projecting the future of Earth's atmosphere.

"Say we wanted to know how much we'd need to reduce human-derived emissions of methane to cut its climate influence by half," Montzka said. "That would require an understanding of hydroxyl and its variability. Since the new results suggest that large hydroxyl radical changes are unlikely, such projections become more reliable."


Contact: Jana Goldman
NOAA Headquarters

Related biology news :

1. New test measures DNA methylation levels to predict colon cancer
2. Mathematical model may result in better environment measures for the Baltic
3. Panel finds insufficient evidence for Alzheimers disease preventive measures
4. UI study measures levels of PCBs flowing from Indiana canal to air and water
5. Prototype NIST method detects and measures elusive hazards
6. NIST calculations may improve temperature measures for microfluidics
7. PRS And EmSense Partner To Integrate Bio-Sensory Measures In Packaging Research Studies
8. Broecker: What we need are tougher measures against climate change
9. Cost-effective measures could stop child pneumonia deaths
10. Illinois Soil Nitrogen Test measures microbial nitrogen
11. Free online toolkit provides standard measures for genome and population studies
Post Your Comments:
(Date:6/21/2016)... British Columbia , June 21, 2016 /PRNewswire/ ... appointed to the new role of principal product ... been named the director of customer development. Both ... NuData,s chief technical officer. The moves reflect NuData,s ... teams in response to high customer demand and ...
(Date:6/9/2016)... control systems is proud to announce the introduction of fingerprint attendance control software, allowing ... are actually signing in, and to even control the opening of doors. ... ... ... Photo - ...
(Date:6/2/2016)... LONDON , June 2, 2016 ... has awarded the 44 million US Dollar project, ... Security Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... world leader in the production and implementation of Identity Management ... in January, however Decatur was selected ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... Lemonade Stand Foundation (ALSF), a leading national childhood cancer ... bioinformatics lab, using ,big data, to advance the pace ... Liz Scott , co-executive director of ALSF and Alex,s ... Washington, D.C. , hosted by Vice President ... pediatric cancer research and awareness. The ...
(Date:6/27/2016)... , June 27, 2016  Global demand for ... percent through 2020 to $7.2 billion.  This market ... beverages, cleaning products, biofuel production, animal feed, and ... diagnostics, and biocatalysts). Food and beverages will remain ... by increasing consumption of products containing enzymes in ...
(Date:6/27/2016)... ON , June 27, 2016 /PRNewswire/ - BIOREM Inc. ... has been advised by its major shareholders, Clean Technology ... United States based venture capital ... shares of Biorem (on a fully diluted, as converted ... the disposition of their entire equity holdings in Biorem ...
(Date:6/27/2016)... SAN DIEGO , June 27, 2016  Sequenom, ... company committed to enabling healthier lives through the development ... Supreme Court of the United States ... Federal courts that the claims of Sequenom,s U.S. Patent ... the patent eligibility criteria established by the Supreme Court,s ...
Breaking Biology Technology: