Navigation Links
NJIT researcher testing micro-electronic stimulators for spinal cord injuries
Date:10/17/2011

A new wireless device to help victims of spinal cord injury is receiving attention in the research community. Mesut Sahin, PhD, associate professor, in the department of biomedical engineering at NJIT, recently has published and presented news of his findings to develop micro-electrical stimulators for individuals with spinal cord injuries.

The work, now in its third year of support from a four-year, $1.4 million National Institutes of Health (NIH) grant, has resulted in the development and testing of a technology known by its acronym, FLAMES (floating light activated micro-electrical stimulators). The technology, really a tiny semiconductor device, will eventually enable people with spinal cord injuries to restore some of the motor functions that are lost due to injury. Energized by an infrared light beam through an optical fiber located just outside the spinal cord these micro-stimulators will activate the nerves in the spinal cord below the point of injury and thus allow the use of the muscles that were once paralyzed.

This past September, The Journal of Neural Engineering ("FLAMES tested in the rat spinal cord," http://iopscience.iop.org/1741-2552/8/5/056012) published the first testing in animals. "Our in vivo tests suggest that the FLAMES can be used for intraspinal micro-stimulation even for the deepest implant locations in the rat spinal cord," said Sahin.

"The power required to generate a threshold arm movement was investigated as the laser source was moved away from the micro-stimulator. The results indicate that the photon density does not decrease substantially for horizontal displacements of the source that are in the same order as the beam radius. This gives confidence that the stimulation threshold may not be very sensitive to small displacement of the spinal cord relative to the spine-mounted optical power source." Sahin spoke about this work at the IEEE Engineering in Medicine and Biology Conference in Boston, also in September of 2011.

FLAMES is a semiconductor device that is remotely controlled by an optical fiber attached to a low power near-infrared laser. The device is implanted into the spinal cord, and is then allowed to float in the tissue. There are no attached wires. A patient pushes a button on the external unit to activate the laser, the laser then activates the FLAMES device.

"The unique aspect of the project is that the implanted stimulators are very small, in the sub-millimeter range," Sahin said. "A key benefit is that since our device is wireless, the connections can't deteriorate over time plus, the implant causes minimal reaction in the tissue which is a common problem with similar wired devices."

The electrical activation of the central and peripheral nervous system has been investigated for treatment of neural disorders for many decades and a number of devices have already successfully moved into the clinical phase, such as cochlear implants and pain management via spinal cord stimulation. Others are on the way, such as micro stimulation of the spinal cord to restore locomotion, micro stimulation of the cochlear nucleus, midbrain, or auditory cortex to better restore hearing and stimulation of the visual cortex in the blind subject. All of them, however, are wired, unlike FLAMES, which is not.

Selim Unlu, professor of electrical and computer engineering at Boston University, is working with Sahin. "We hope that once FLAMES advances to the clinical stage, patients paralyzed by spinal injury will be able to regain vital functions," Sahin said.


'/>"/>

Contact: Sheryl Weinstein
973-596-3436
New Jersey Institute of Technology
Source:Eurekalert  

Related biology news :

1. Wistar Institute researcher receives New Innovator award from NIH
2. NC State researchers get to root of parasite genome
3. Researchers find animal with ability to survive climate change
4. Researchers find an essential gene for forming ears of corn
5. Researchers note differences between people and animals on calorie restriction
6. Researcher working on destruction of chemical weapons
7. Researchers study acoustic communication in deep-sea fish
8. Researchers discover that growing up too fast may mean dying young in honey bees
9. Researchers study how pistachios may improve heart health
10. UI researchers find potentially toxic substance present in Chicago air
11. Researchers develop new self-training gene prediction program for fungi
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NJIT researcher testing micro-electronic stimulators for spinal cord injuries
(Date:3/29/2017)... 29, 2017  higi, the health IT company that ... North America , today announced a Series B ... of EveryMove. The new investment and acquisition accelerates higi,s ... to transform population health activities through the collection and ... higi collects and secures data today on behalf ...
(Date:3/24/2017)... The Controller General of Immigration from Maldives Mr. Mohamed ... received the prestigious international IAIR Award for the most innovative high security ... ... Maldives Immigration Controller General, ... picture on the right) have received the IAIR award for the "Most ...
(Date:3/23/2017)... , Mar. 23, 2017 Research and Markets ... Market Analysis & Trends - Industry Forecast to 2025" report ... ... at a CAGR of around 8.8% over the next decade to ... report analyzes the market estimates and forecasts for all the given ...
Breaking Biology News(10 mins):
(Date:5/15/2017)... ... May 15, 2017 , ... Continuing to build off ... has today launched its first-ever cross-medium campaign, #StandFirm, with high-visibility social and digital ... social media channels, emphasizing Algenist’s stance on individuality and disruption: , We ...
(Date:5/12/2017)... ARBOR, Mich. , May 12, 2017 ... selected to present at the 36th annual Michigan Growth ... Forum. GreenMark, a Delaware corporation ... be presenting to investors in attendance, including more than ... deliver health benefits to society through biobased targeting technologies. ...
(Date:5/11/2017)... BioLife Solutions , Inc. (NASDAQ: BLFS ), a ... and tissue hypothermic storage and cryopreservation freeze ... and financial results for the first quarter of 2017. ... high of $2.4 million in the first quarter of 2017, ... Revenue growth was driven by sales of CryoStor ® ...
(Date:5/11/2017)... Yorba Linda, Ca (PRWEB) , ... May 11, ... ... (hPSCs) and primary rodent neurons both are excellent resources for disease modeling and ... culture and further differentiated into mature neurons for various applications, however, these often ...
Breaking Biology Technology: