Navigation Links
NJIT professor to speak about discovery to Physical Society
Date:11/16/2009

Even if you are not a cook, you might have wondered why a pinch of flour (or any small particles) thrown into a bowl of water will disperse in a dramatic fashion, radiating outward as if it was exploding. Pushpendra Singh, PhD, a mechanical engineering professor at NJIT who has studied and written about the phenomenon, has not only thought about it, but can explain why.

He says that what's known as the repulsive hydrodynamic force arising from the oscillation of particles causes them to disperse. A particle trapped in a liquid surface vibrates up and down from its equilibrium position on the surface, or interface, where air meets water. When many particles do this simultaneously, an explosive dispersion occurs.

Singh will speak more about his theory in Minneapolis at the upcoming meeting on Nov. 23, 2009 of the Division of Fluid Dynamics of the American Physical Society.

The talk will include highlights from his recent article "Spontaneous Dispersion of Particles on Liquid Surfaces," which appeared in the Nov. 11, 2009 early edition of the Proceedings of the National Academy of Sciences. The National Science Foundation has supported this research.

Singh says that when small particles, such as flour or pollen, come in contact with a liquid surface, they immediately disperse and form a monolayer. The dispersion occurs so quickly that it appears explosive, especially on the surface of liquids like water.

This explosive dispersion is a consequence of the capillary force pulling particles towards their equilibrium positions in the interface. The capillary force causes the particles to accelerate very rapidly.

"If a particle barely touches the interface, it is pulled onto the surface," said Singh. "For example, if the contact angle for a spherical particle is 90 degrees, it floats in the state of equilibrium so that one-half of it is above the surface and the remaining half is below. If the particle, however, is not in this position, the capillary force will force it to be."

What's interesting is that the smaller the particles, the faster they move. For nanometer-sized particles like viruses and proteins, the velocity or speed on an air-water interface can be as high as 167 kilometers (about 100 miles) per hour.

Singh says the motion of the particles is dominated by inertia because the viscous dampingwhich is like frictionis too small. He compares the situation to a moving pendulum. "The pendulum will oscillate many times before friction makes it stop," he says. "If friction is too great, it won't oscillate."

Eventually, the particles which have been oscillating around their equilibrium point will stop--thanks to viscous drag which causes resistance to the motion.

"Let me explain more about viscous drag," said Singh. "When a body, such as a ball, moves through air or liquid, it will resist the motion. This resistance is caused by viscous drag. Or look at it this way. When a particle is adsorbed at a surface, it acquires a part of the released interfacial energy as kinetic energy," he says. "The particle dissipates this kinetic energy by oscillating from its equilibrium height in the interface. The act gives rise to repulsive hydrodynamic forces, the underlying cause of why particles disperse."


'/>"/>

Contact: Sheryl Weinstein
sheryl.m.weinstein@njit.educ
973-596-3436
New Jersey Institute of Technology
Source:Eurekalert

Related biology news :

1. Professor Suzanne Cory awarded 2009 Pearl Meister Greengard Prize
2. NSF awards Life in Transition grants to University of Oklahoma professors
3. GSU professor develops new method to help keep fruit, vegetables and flowers fresh
4. Professor Jens Reich first recipient of the Carl Friedrich von Weizsacker award
5. Kent State University Professor C. Owen Lovejoy helps unveil oldest hominid skeleton
6. UAB professors book promises solution for teaching evolution without conflict
7. Some aspects of birding not always environmentally friendly, professor says
8. Study by NTU professors provides important insight into apoptosis or programmed cell death
9. University of Hawaii at Manoa professor published in science journal
10. SF State professor honored by President Obama for science mentoring
11. NTU professor discovers method to efficiently produce less toxic drugs using organic molecules
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/23/2017)... ARMONK, N.Y. , Aug. 23, 2017  The general public,s help ... the human microbiome—the bacteria that live in and on the human body ... ... bacteria in the human microbiome, starting with the gut. The project's goal ... in disease. Photo credit: IBM ...
(Date:7/20/2017)... , July 20, 2017 Delta (NYSE: DAL ... board any Delta aircraft at Reagan Washington National Airport (DCA). ... Delta launches biometrics to ... Delta,s biometric ... Sky Club is now integrated into the boarding process to allow ...
(Date:6/23/2017)... ITHACA, N.Y. , June 23, 2017  IBM ... in dairy research, today announced a new collaboration using ... the chances that the global milk supply is impacted ... project, Cornell University has become the newest academic institution ... Chain, a food safety initiative that includes IBM Research, ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... , ... October 11, 2017 , ... ... announced today it will be hosting a Webinar titled, “Pathology is going digital. ... Associates , on digital pathology adoption best practices and how Proscia improves lab ...
(Date:10/11/2017)... , ... October 11, 2017 , ... ... (FDA) has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer ... treatment of osteosarcoma. SBT-100 is able to cross the cell membrane and bind ...
(Date:10/10/2017)... DALLAS , Oct. 10, 2017 International research firm ... IoT Strategy, will speak at the TMA 2017 Annual Meeting , ... key trends in the residential home security market and how smart safety ... ... "The ...
(Date:10/9/2017)... FL (PRWEB) , ... October 09, 2017 , ... The ... scheduled to broadcast first quarter 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. ... industry is faced with the challenge of how to continue to feed a growing ...
Breaking Biology Technology: