Navigation Links
NJIT professor to speak about discovery to Physical Society
Date:11/16/2009

Even if you are not a cook, you might have wondered why a pinch of flour (or any small particles) thrown into a bowl of water will disperse in a dramatic fashion, radiating outward as if it was exploding. Pushpendra Singh, PhD, a mechanical engineering professor at NJIT who has studied and written about the phenomenon, has not only thought about it, but can explain why.

He says that what's known as the repulsive hydrodynamic force arising from the oscillation of particles causes them to disperse. A particle trapped in a liquid surface vibrates up and down from its equilibrium position on the surface, or interface, where air meets water. When many particles do this simultaneously, an explosive dispersion occurs.

Singh will speak more about his theory in Minneapolis at the upcoming meeting on Nov. 23, 2009 of the Division of Fluid Dynamics of the American Physical Society.

The talk will include highlights from his recent article "Spontaneous Dispersion of Particles on Liquid Surfaces," which appeared in the Nov. 11, 2009 early edition of the Proceedings of the National Academy of Sciences. The National Science Foundation has supported this research.

Singh says that when small particles, such as flour or pollen, come in contact with a liquid surface, they immediately disperse and form a monolayer. The dispersion occurs so quickly that it appears explosive, especially on the surface of liquids like water.

This explosive dispersion is a consequence of the capillary force pulling particles towards their equilibrium positions in the interface. The capillary force causes the particles to accelerate very rapidly.

"If a particle barely touches the interface, it is pulled onto the surface," said Singh. "For example, if the contact angle for a spherical particle is 90 degrees, it floats in the state of equilibrium so that one-half of it is above the surface and the remaining half is below. If the particle, however, is not in this position, the capillary force will force it to be."

What's interesting is that the smaller the particles, the faster they move. For nanometer-sized particles like viruses and proteins, the velocity or speed on an air-water interface can be as high as 167 kilometers (about 100 miles) per hour.

Singh says the motion of the particles is dominated by inertia because the viscous dampingwhich is like frictionis too small. He compares the situation to a moving pendulum. "The pendulum will oscillate many times before friction makes it stop," he says. "If friction is too great, it won't oscillate."

Eventually, the particles which have been oscillating around their equilibrium point will stop--thanks to viscous drag which causes resistance to the motion.

"Let me explain more about viscous drag," said Singh. "When a body, such as a ball, moves through air or liquid, it will resist the motion. This resistance is caused by viscous drag. Or look at it this way. When a particle is adsorbed at a surface, it acquires a part of the released interfacial energy as kinetic energy," he says. "The particle dissipates this kinetic energy by oscillating from its equilibrium height in the interface. The act gives rise to repulsive hydrodynamic forces, the underlying cause of why particles disperse."


'/>"/>

Contact: Sheryl Weinstein
sheryl.m.weinstein@njit.educ
973-596-3436
New Jersey Institute of Technology
Source:Eurekalert

Related biology news :

1. Professor Suzanne Cory awarded 2009 Pearl Meister Greengard Prize
2. NSF awards Life in Transition grants to University of Oklahoma professors
3. GSU professor develops new method to help keep fruit, vegetables and flowers fresh
4. Professor Jens Reich first recipient of the Carl Friedrich von Weizsacker award
5. Kent State University Professor C. Owen Lovejoy helps unveil oldest hominid skeleton
6. UAB professors book promises solution for teaching evolution without conflict
7. Some aspects of birding not always environmentally friendly, professor says
8. Study by NTU professors provides important insight into apoptosis or programmed cell death
9. University of Hawaii at Manoa professor published in science journal
10. SF State professor honored by President Obama for science mentoring
11. NTU professor discovers method to efficiently produce less toxic drugs using organic molecules
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... April 5, 2017  The Allen Institute for Cell ... Explorer: a one-of-a-kind portal and dynamic digital window into ... data, the first application of deep learning to create ... cell lines and a growing suite of powerful tools. ... these and future publicly available resources created and shared ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC ... announced that the United States Patent and Trademark Office ... broadly covers the linking of an iris image with ... transaction) and represents the company,s 45 th issued ... patent is very timely given the multi-modal biometric capabilities ...
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University ... adopting ground breaking 3D fingerprint minutiae recovery and matching technology, pushing ... for use in identification, crime investigation, immigration control, security of access ... ... A research team led by Dr Ajay ...
Breaking Biology News(10 mins):
(Date:4/20/2017)... ... April 20, 2017 , ... Assured Enterprises, Inc. ... offer a full spectrum of digital security goods and services. The strategic partners ... the ground-breaking proactive cybersecurity services and products through Assured Enterprises. The two companies ...
(Date:4/20/2017)... ... April 20, 2017 , ... Husson University ... research community’s growing body of knowledge during its Eighth Annual Research and ... the adjacent Darling Atrium. During the event, undergraduates, graduate students, and faculty members ...
(Date:4/20/2017)... ... April 20, 2017 , ... Energetiq Technology , ... today that Chief Executive Officer (CEO) Debbie Gustafson has been appointed to the ... industry association connecting the electronics manufacturing supply chain. The mission of the SEMI ...
(Date:4/20/2017)... , April 20, 2017 Dutch philosopher Koert van ... ,Next Nature, at the University of Technology in Eindhoven - has written ... this letter, he calls on humanity to avoid becoming a slave and victim ... ... Dutch philosopher Koert van Mensvoort – founder of the ...
Breaking Biology Technology: