Navigation Links
NIST tunes 'metasurface' with fluid in new concept for sensing and chemistry
Date:6/8/2011

Like an opera singer hitting a note that shatters a glass, a signal at a particular resonant frequency can concentrate energy in a material and change its properties. And as with 18th century "musical glasses," adding a little water can change the critical pitch. Echoing both phenomena, researchers at the National Institute of Standards and Technology (NIST) have demonstrated a unique fluid-tuned "metasurface," a concept that may be useful in biomedical sensors and microwave-assisted chemistry.

A metasurface or metafilm is a two-dimensional version of a metamaterial, popularized recently in technologies with seemingly unnatural properties, such as the illusion of invisibility. Metamaterials have special properties not found in nature, often because of a novel structure. NIST's metasurface is a small piece of composite circuit board studded with metal patches in specific geometries and arrangements to create a structure that can reflect, store, or transmit energy (that is, allow it to pass right through).

As described in a new paper,* NIST researchers used purified water to tune the metasurface's resonant frequencythe specific microwave frequency at which the surface can accumulate or store energy. They also calculated that the metasurface could concentrate electric field strength in localized areas, and thus might be used to heat fluids and promote microwave-assisted chemical or biochemical reactions.

The metasurface's behavior is due to interactions of 18 square copper frame structures, each 10 millimeters on a side (see photo). Computer simulations help design the copper squares to respond to a specific frequency. They are easily excited by microwaves, and each one can store energy in a T-shaped gap in its midsection when the metasurface is in a resonant condition. Fluid channels made of plastic tubing are bonded across the gaps. The sample is placed in a waveguide, which directs the microwaves and acts like a kaleidoscope, with walls that serve as mirrors and create the electrical illusion that the metasurface extends to infinity.

Researchers tested the metasurface properties with and without purified water in the fluid channels. The presence of water shifted the resonant frequency from 3.75 to 3.60 gigahertz. At other frequencies, the metasurface reflects or transmits energy. Researchers also calculated that the metasurface, when in the resonant condition, could concentrate energy in the gaps at least 100 times more than the waveguide alone.

Metasurface/fluid interactions might be useful in tunable surfaces, sensing and process monitoring linked to changes in fluid flow, and catalysis of chemical or biochemical reactions in fluid channels controlled by changes in microwave frequency and power as well as fluid flow rates. NIST researchers are also looking into the possibility of making metamaterial chips or circuits to use for biomedical applications such as counting cells.


'/>"/>

Contact: Laura Ost
laura.ost@nist.gov
303-497-4880
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Human genes sing different tunes in different tissues
2. Songbirds tweak their tunes in different ways to cope with clamor
3. Kalyon wins Thomas Baron Award in Fluid-Particle Systems
4. Animal and biological science highlights: San Antonio Fluid Dynamics Conference, Nov. 23-25
5. Uncultured bacteria found in amniotic fluids of women who experience preterm births
6. GEN reports on growing reliance on microfluidics technology
7. Study: Fluid buildup in lungs is part of the damage done by the flu
8. Amniotic fluid may provide new source of stem cells for future therapies
9. NIST-Cornell team builds worlds first nanofluidic device with complex 3-D surfaces
10. Microfluidic palette may paint clearer picture of biological processes
11. NIST calculations may improve temperature measures for microfluidics
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NIST tunes 'metasurface' with fluid in new concept for sensing and chemistry
(Date:4/15/2016)... 2016 Research and Markets has ... Market 2016-2020,"  report to their offering.  , ... ,The global gait biometrics market is expected to ... period 2016-2020. Gait analysis generates multiple ... used to compute factors that are not or ...
(Date:3/31/2016)...  Genomics firm Nabsys has completed a financial  restructuring ... , M.D., who returned to the company in October ... team, including Chief Technology Officer, John Oliver , ... and Vice President of Software and Informatics, Michael ... Dr. Bready served as CEO of Nabsys from 2005-2014 ...
(Date:3/22/2016)... Ontario , PROVO and ... Newborn Screening Ontario (NSO), which operates the ... for molecular testing, and Tute Genomics and UNIConnect, ... management technology respectively, today announced the launch of a ... next-generation sequencing (NGS) testing panel. NSO ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... ... 29, 2016 , ... Proove Biosciences, Inc ., the ... launch of the Proove Health Foundation . The Foundation is a non-profit ... use of personalized medicine for tackling the nation’s most-pressing healthcare epidemics. As part ...
(Date:4/29/2016)... ... ... Intelligent Implant Systems announced today that the two-level components for the Revolution™ Spinal System ... These components expand the capabilities of the system and allow Revolution™ to be utilized ... the company has seen significant sales growth in 1Q 2016, and the system is ...
(Date:4/28/2016)... ... April 28, 2016 , ... Next ... a talk on its first-in-class technologies for tissue stem cell counting and expansion ... RNAiMicroRNA Biology to Reprogramming & CRISPR-based Genome Engineering in Burlington, Massachusetts. , The ...
(Date:4/27/2016)... ... April 27, 2016 , ... The Pittcon Organizing Committee is pleased to ... been a volunteer member of Committee since 1987. Since then, he has served in ... treasurer and was chairman for both the program and exposition committees. In his professional ...
Breaking Biology Technology: