Navigation Links
NIST technique controls sizes of nanoparticle clusters for EHS studies
Date:2/2/2011

The same properties that make engineered nanoparticles attractive for numerous applicationssmall as a virus, biologically and environmentally stabile, and water-solublealso cause concern about their long-term impacts on environmental health and safety (EHS). One particular characteristic, the tendency for nanoparticles to clump together in solution, is of great interest because the size of these clusters may be key to whether or not they are toxic to human cells. Researchers at the National Institute of Standards and Technology (NIST) have demonstrated for the first time a method for producing nanoparticle clusters in a variety of controlled sizes that are stable over time so that their effects on cells can be studied properly.*

In their tests, the NIST team made samples of gold, silver, cerium oxide and positively-charged polystyrene nanoparticles and suspended them separately in cell culture medium, allowing clumping to occur in each. They stopped the clumping by adding a protein, bovine serum albumin (BSA), to the mixtures. The longer the nanoparticles were allowed to clump together, the larger the size of the resulting cluster. For example, a range of clustering times using 23 nanometer silver nanoparticles produced a distribution of masses between 43 and 1,400 nanometers in diameter. Similar size distributions for the other three nanoparticle types were produced using this method.

The researchers learned that using the same "freezing times"the points at which BSA was added to halt the processyielded consistent size distributions for all four nanoparticle types. Additionally, all of the BSA-controlled dispersions remained stable for 2-3 days, which is sufficient for many toxicity studies.

Having successfully shown that they could control the production of nanoparticle clumps of different sizes, the researchers wanted next to prove that their creations could be put to work. Different-sized silver nanoparticle clusters were mixed with horse blood in an attempt to study the impact of clumping size on red blood cell toxicity. The presence of hemoglobin, the iron-based molecule in red blood cells that carries oxygen, would tell researchers if the cells had been lysed (broken open) by silver ions released into the solution from the clusters. In turn, measuring the amount of hemoglobin in solution for each cluster size would define the level of toxicitypossibly related to the level of silver ion releasefor that specific average size.

What the researchers found was that red blood cell destruction decreased as cluster size increased. They hypothesize that large nanoparticle clusters dissolve more slowly than small ones, and therefore, release fewer silver ions into solution.

In the future, the NIST team plans to further characterize the different cluster sizes achievable through their production method, and then use those clusters to study the impact on cytotoxicity of coatings (such as polymers) applied to the nanoparticles.


'/>"/>

Contact: Michael E. Newman
michael.newman@nist.gov
301-975-3025
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. New technique to see neurons of the deep brain for months at a time developed at Stanford
2. Technique allows researchers to identify key maize genes for increased yield
3. GEN co-sponsors roundtable discussion on novel bioremediation techniques
4. Quartz crystal microbalances enable new microscale analytic technique
5. New imaging technique accurately finds cancer cells, fast
6. New oyster farming technique increases productivity, offers entrepreneurial opportunities
7. Invention helps students learn surgical techniques before operating on patients
8. Radically simple technique developed to grow conducting polymer thin films
9. Optical technique reveals unnexpected complexity in mammalian olfactory coding
10. Technique to reattach teeth using stem cells developed at UIC
11. New oil detection technique
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NIST technique controls sizes of nanoparticle clusters for EHS studies
(Date:5/16/2017)... N.J. , May 16, 2017  Veratad Technologies, ... provider of online age and identity verification solutions, announced ... K(NO)W Identity Conference 2017, May 15 thru May 17, ... Regan Building and International Trade Center. ... the globe and in today,s quickly evolving digital world, ...
(Date:5/6/2017)... RAM Group , Singaporean based ... in biometric authentication based on a novel  ... to perform biometric authentication. These new sensors are based on ... Ram Group and its partners. This sensor will have ... and security. Ram Group is a next generation ...
(Date:4/19/2017)... New York , April 19, 2017 ... competitive, as its vendor landscape is marked by the ... the market is however held by five major players ... Safran. Together these companies accounted for nearly 61% of ... of the leading companies in the global military biometrics ...
Breaking Biology News(10 mins):
(Date:5/18/2017)... (PRWEB) , ... May 16, 2017 , ... Clinical Supplies ... executive appointments as the company continues to grow. CSM has doubled in size ... and is executing an aggressive growth strategy. , Roger Gasper joins CSM as Chief ...
(Date:5/18/2017)... ... May 17, 2017 , ... ... and further enhances its scientific power by providing investigators access to a ... agreed to join the scientific advisory board. “We are committed to offering ...
(Date:5/18/2017)... (PRWEB) , ... May 17, 2017 , ... ... innovation and business process optimization firm for the life sciences and healthcare industries, ... the UDIs and Traceability for Medical Devices conference in Brussels, Belgium. , Crowley ...
(Date:5/18/2017)... Station, TX (PRWEB) , ... May 17, 2017 ... ... design and construction, announced today that their Chief Executive Officer, Maik Jornitz, was ... List. The UK publication’s Power List celebrates 100 individuals “involved in bettering the ...
Breaking Biology Technology: