Navigation Links
NIST team advances in translating language of nanopores
Date:6/24/2010

National Institute of Standards and Technology (NIST) scientists have moved a step closer to developing the means for a rapid diagnostic blood test that can scan for thousands of disease markers and other chemical indicators of health. The team reports* it has learned how to decode the electrical signals generated by a nanoporea "gate" less than 2 nanometers wide in an artificial cell membrane.

Nanopores are not new themselves; for more than a decade, scientists have sought to use a nanopore-based electrical detector to characterize single-stranded DNA for genetic sequencing applications. More recently, NIST scientists turned their attention to using nanopores to identify, quantify and characterize each of the more than 20,000 proteins the body producesa capability that would provide a snapshot of a patient's overall health at a given moment. But while nanopores permit molecules to enter into them one at a time, determining what specific individual molecule has just passed through has not been easy.

To address this problem, members of the NIST team that previously developed a method to distinguish both the size and concentration of each type of molecule the nanopore admits** have now answered the question of just how these single molecules interact with the nanopore. Their new theoretical model describes the physics and chemistry of how the nanopore, in effect, parses a molecule, an understanding that will advance the use of nanopores in the medical field.

"This work brings us one step closer to realizing these nanopores as a powerful diagnostic tool for medical science," says Joseph Reiner, who performed the work with Joseph Robertson, and John Kasianowicz, all of NIST's Semiconductor Electronics Division. "It adds to the 'Rosetta Stone' that will allow us to read what molecules have just passed through a nanopore."

Using their new methods, the team was able to model the interaction of a particular type of large molecule through a nanopore's opening with great accuracy. The molecules were polyethylene glycol (PEG), a well-understood polymer that forms chains of varying length.

"PEG chains can be very long, but each link is very small," Kasianowicz says. "It was a good test because we wanted to see if the nanopore could differentiate between two nearly identical large molecules that differ in length by only a few atoms."

The team's device was able to distinguish among different-sized PEG chains easily, and the model they have developed to describe the PEG-nanopore interactions is encouraging them to think that with further effort, the minuscule sensors can be customized to measure many different molecules quickly. "We could conceivably build an array of many nanopores, each one created to measure a specific substance," Kasianowicz says. "Because each nanopore is so small, an array with one for every protein in the body would still be tiny."


'/>"/>

Contact: Chad Boutin
boutin@nist.gov
301-975-4261
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Restoring sight, advances in fertility treatments and better visibility for pilots at FIO
2. Cardiologists and heart surgeons meet for Controversies and Advances conference
3. Lockheed Martin Advances Biometrics Portfolio Through Cooperation Agreement With Cognitec
4. Genetic Engineering & Biotechnology News reports on advances in miRNA
5. Prototype terahertz imager promises biochem advances
6. Science expands Science Signaling, featuring research related to medical advances, and more
7. Analysis of RNA role in spreading disease advances study of damaging plant infections
8. Iowa State-ConocoPhillips collaboration advances 26 research projects in first year
9. Brown to host conference on advances in neurotechnology
10. Latest advances in interventional cardiology for congenital heart disease presented
11. Advances in the field of schizophrenia research: New genetic factors identified
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NIST team advances in translating language of nanopores
(Date:3/23/2016)... March 23, 2016 ... Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender Anbieter ... Unternehmen mit SpeechPro zusammenarbeitet, um erstmals dessen ... wird die Möglichkeit angeboten, im Rahmen mobiler ...
(Date:3/18/2016)... LONDON , March 18, 2016 ... Established Suppliers of Biometrics, ICT, Manned & Unmanned Vehicles, Physical ... & security companies in the border security market and ... and Europe has led ... your companies improved success. --> defence & ...
(Date:3/14/2016)... March 14, 2016 NXTD ) ("NXT-ID" ... commerce market, announces the airing of a new series of ... week of March 21 st .  The commercials will air ... popular Squawk on the Street show. --> NXTD ... growing mobile commerce market, announces the airing of a new ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... ... May 25, 2016 , ... Thailand’s Board of ... 2016 in San Francisco. Located at booth number 7301, representatives from the Thai ... and discuss the Thai biotechnology and life sciences sector. , Deputy Secretary ...
(Date:5/25/2016)... ... ... Scientists at the University of Athens say they have evidence that the variety ... that could lead to one good one. Surviving Mesothelioma has just posted an article ... team evaluated 98 mesothelioma patients who got a second kind of drug ...
(Date:5/24/2016)... , ... May 24, 2016 , ... ... diabetes, and traumatic injuries, will be accelerated by research at Worcester Polytechnic Institute ... engines of wound healing and tissue regeneration. , The novel method, developed by ...
(Date:5/23/2016)... ... 2016 , ... The need for blood donations in South Texas and across the nation is ... & Tissue Center, blood donations are on the decline. In fact, donations across the country ... percent in South Texas in the last four years alone. , There is no substitute ...
Breaking Biology Technology: