Navigation Links
NIST nanofluidic 'multi-tool' separates and sizes nanoparticles
Date:8/4/2010

A wrench or a screwdriver of a single size is useful for some jobs, but for a more complicated project, you need a set of tools of different sizes. Following this guiding principle, researchers at the National Institute of Standards and Technology (NIST) have engineered a nanoscale fluidic device that functions as a miniature "multi-tool" for working with nanoparticlesobjects whose dimensions are measured in nanometers, or billionths of a meter.

First introduced in March 2009 (see "NIST-Cornell Team Builds World's First Nanofluidic Device with Complex 3-D Surfaces", the device consists of a chamber with a cascading "staircase" of 30 nanofluidic channels ranging in depth from about 80 nanometers at the top to about 620 nanometers (slightly smaller than an average bacterium) at the bottom. Each of the many "steps" of the staircase provides another "tool" of a different size to manipulate nanoparticles in a method that is similar to how a coin sorter separates nickels, dimes and quarters.

In a new article in the journal Lab on a Chip*, the NIST research team demonstrates that the device can successfully perform the first of a planned suite of nanoscale tasksseparating and measuring a mixture of spherical nanoparticles of different sizes (ranging from about 80 to 250 nanometers in diameter) dispersed in a solution. The researchers used electrophoresisthe method of moving charged particles through a solution by forcing them forward with an applied electric fieldto drive the nanoparticles from the deep end of the chamber across the device into the progressively shallower channels. The nanoparticles were labeled with fluorescent dye so that their movements could be tracked with a microscope.

As expected, the larger particles stopped when they reached the steps of the staircase with depths that matched their diameters of around 220 nanometers. The smaller particles moved on until they, too, were restricted from moving into shallower channels at depths of around 110 nanometers. Because the particles were visible as fluorescent points of light, the position in the chamber where each individual particle was stopped could be mapped to the corresponding channel depth. This allowed the researchers to measure the distribution of nanoparticle sizes and validate the usefulness of the device as both a separation tool and reference material. Integrated into a microchip, the device could enable the sorting of complex nanoparticle mixtures, without observation, for subsequent application. This approach could prove to be faster and more economical than conventional methods of nanoparticle sample preparation and characterization.

The NIST team plans to engineer nanofluidic devices optimized for different nanoparticle sorting applications. These devices could be fabricated with tailored resolution (by increasing or decreasing the step size of the channels), over a particular range of particle sizes (by increasing or decreasing the maximum and minimum channel depths), and for select materials (by conforming the surface chemistry of the channels to optimize interaction with a specific substance). The researchers are also interested in determining if their technique could be used to separate mixtures of nanoparticles with similar sizes but different shapesfor example, mixtures of tubes and spheres.


'/>"/>

Contact: Michael E. Newman
michael.newman@nist.gov
301-975-3025
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. NIST-Cornell team builds worlds first nanofluidic device with complex 3-D surfaces
2. Brain innately separates living and non-living objects for processing
3. New method separates cancer cells from normal cells
4. TEEB study leader emphasizes urgent need for action on biodiversity loss
5. UCLA researchers reconstitute enzyme that synthesizes cholesterol drug lovastatin
6. Sea Grant report synthesizes recent research on New Yorks clams
7. Iowa State chemist synthesizes carbohydrates, launches startup company
8. Nanoparticle toxicity doesnt get wacky at the smallest sizes
9. New catalyst of platinum nanoparticles could lead to conk-out free, stable fuel cells
10. Nanoblasts from laser-activated nanoparticles move molecules, proteins and DNA into cells
11. Researchers use nanoparticles as destructive beacons to zap tumors
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NIST nanofluidic 'multi-tool' separates and sizes nanoparticles
(Date:6/23/2017)... N.Y. and ITHACA, N.Y. ... ) and Cornell University, a leader in dairy research, ... with bioinformatics designed to help reduce the chances that ... With the onset of this dairy project, Cornell University ... Consortium for Sequencing the Food Supply Chain, a food ...
(Date:5/23/2017)... the first robotic gym for the rehabilitation and functional motor sense evaluation ... Genoa, Italy . The first 30 robots will be available from ... . The technology was developed and patented at the IIT laboratories ... Technology thanks to a 10 million euro investment from entrepreneur Sergio Dompè. ... ...
(Date:5/16/2017)... May 16, 2017   Bridge Patient Portal ... and MD EMR Systems , an electronic ... for GE, have established a partnership to build ... and the GE Centricity™ products, including Centricity Practice ... These new integrations will allow healthcare ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... ... October 10, 2017 , ... USDM Life Sciences , ... life sciences and healthcare industries, announces a presentation by Subbu Viswanathan and Jennifer ... “Automating GxP Validation for Agile Cloud Platforms,” will present a revolutionary approach to ...
(Date:10/9/2017)... Oct. 9, 2017  BioTech Holdings announced today ... which its ProCell stem cell therapy prevents limb ... The Company, demonstrated that treatment with ProCell resulted ... saved as compared to standard bone marrow stem ... resulted in reduction of therapeutic effect.  ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board meeting ... a professor in Harvard University’s Departments of Physics and Astronomy, has been selected for ... of the winning team for the 2015 Breakthrough Prize in Fundamental physics for the ...
(Date:10/9/2017)... , ... October 09, 2017 ... ... on October 5, 2017, in the medical journal, Epilepsia, Brain Sentinel’s SPEAC® ... gold standard, video EEG, in detecting generalized tonic-clonic seizures (GTCS) using surface ...
Breaking Biology Technology: