Navigation Links
NIST cell membrane model studied as future diagnostic tool

Researchers at the National Institute of Standards and Technology (NIST) and in Lithuania have used a NIST-developed laboratory model of a simplified cell membrane to accurately detect and measure a protein associated with a serious gynecological disease, bacterial vaginosis (BV), at extraordinarily low concentrations. The work illustrates how the artificial membrane could be used to improve disease diagnosis.

Caused by the bacteria Gardnerella vaginalis, BV is a very common health problem in women and has been linked to infertility, adverse pregnancy outcomes, post-surgery infections and increased risk for acquiring sexually transmitted diseases. Current diagnosis relies on time-consuming, labor-intensive and somewhat inconsistent laboratory cultures or immunological assays.

In a recent paper in the journal PLoS One,* researchers at NIST and Vilnius University (Vilnius, Lithuania) reported that they were able to reveal the presence of G. vaginalis by rapidly detecting and quantifying vaginolysin (VLY), a protein toxin produced exclusively by the bacteria, using the NIST model of cell membranes known as a tethered bilayer lipid membrane (tBLM).

The NIST tBLM is a two-layer sheet of simple lipid molecules analogous to the more complex structures that form the outer shell of animal cells. The membrane is anchored to a substrate with molecular "tethers" that allow it to be surrounded, top and bottom, by typical cellular fluids. Researchers can use the model to study how various factors, such as proteins, affect the integrity of the

In nature, the protein VLY binds to cholesterol-containing membranes and forms pores in the structure, causing the cell to burst open and die. The researchers prepared a molecular fishing line by baiting their laboratory membrane with cholesterol in concentrations ranging from 0 percent (serving as the control) to 40 percent. VLY proteins hooked by the cholesterol obligingly created pores in the test membranes, which in turn altered the electrochemical behavior of the membranes in a way that could be detected in real time by a sensitive technique called electrochemical impedance spectroscopy (EIS).

The researchers found that they could detect the presence of VLY down to 28 nanograms (billionths of a gram) per milliliter, a four-fold improvement over antibody detection methods now in use. The speed of detection also is faster, with the tBLM-EIS system yielding results in hours rather than days. Additionally, different G. vaginalis strains produce different amounts of VLY, so in many cases, the corresponding EIS readings can help define the specific type of bacteria present in an infection.

Now that they have proven the viability of the tBLM-EIS detection system, the researchers plan to begin tests on clinical samples early this year.

Contact: Michael E. Newman
National Institute of Standards and Technology (NIST)

Related biology news :

1. Punctured cell membranes lead to high blood pressure
2. FASEB announces 2014 Science Research Conference: Molecular Biophysics of Membranes
3. Designer piercings: New membrane pores with DNA nanotechnology
4. Super-thin membranes clear the way for chip-sized pumps
5. Researchers capture images of open channel that moves proteins across cell membranes
6. Study: Acidity can change cell membrane properties
7. How bacteria integrate autotransporters into their outer membrane
8. Photosynthesis: Membranes in tight corners
9. Pathway for membrane building blocks
10. New look at cell membrane reveals surprising organization
11. Modifications of a nanoparticle can change chemical interactions with cell membranes
Post Your Comments:
Related Image:
NIST cell membrane model studied as future diagnostic tool
(Date:10/29/2015)... Oct. 29, 2015  Connected health pioneer, Joseph ... explosion of technology-enabled health and wellness, and the business ... The Internet of Healthy Things . ... smartphones even existed, Dr. Kvedar, vice president, Connected Health, ... care delivery, moving care from the hospital or doctor,s ...
(Date:10/27/2015)... 2015 In the present market scenario, security ... various industry verticals such as banking, healthcare, defense, electronic ... demand for secure & simplified access control and growing ... hacking of bank accounts, misuse of users, , and ... PC,s, laptops, and smartphones are expected to provide potential ...
(Date:10/26/2015)... , October 26, 2015 /PRNewswire/ ... --> adds Biometrics ... to 2021 as well as Emerging ... research reports to its collection of ... . --> ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... and HOLLISTON, Mass. , Nov. 25, ... HART ), a biotechnology company developing bioengineered organ ... Jim McGorry will present at the LD Micro ... at 2:30 p.m. PT. The presentation will be webcast ... days. Management will also be available at the conference ...
(Date:11/25/2015)... PORTLAND, Oregon , November 25, 2015 /PRNewswire/ ... Deep Market Research Report is a professional and ... Genomics industry.      (Logo: ... basic overview of the industry including definitions, classifications, ... analysis is provided for the international markets including ...
(Date:11/24/2015)... Halozyme Therapeutics, Inc. (NASDAQ: HALO ) will be presenting at ... on Wednesday, December 2 at 9:30 a.m. ET/6:30 a.m. PT ... provide a corporate overview. th Annual Oppenheimer Healthcare ... ET/10:00 a.m. PT . Jim Mazzola , vice president ... --> th Annual Oppenheimer Healthcare Conference in ...
(Date:11/24/2015)...  Clintrax Global, Inc., a worldwide provider of clinical research services ... that the company has set a new quarterly earnings record in ... growth posted for Q3 of 2014 to Q3 of 2015.   ... , with the establishment of an Asia-Pacific ... United Kingdom and Mexico , ...
Breaking Biology Technology: