Navigation Links
NIST-Cornell team builds world's first nanofluidic device with complex 3-D surfaces
Date:3/31/2009

GAITHERSBURG, Md.Researchers at the Commerce Department's National Institute of Standards and Technology (NIST) and Cornell University have capitalized on a process for manufacturing integrated circuits at the nanometer (billionth of a meter) level and used it to develop a method for engineering the first-ever nanoscale fluidic (nanofluidic) device with complex three-dimensional surfaces.

As described in a paper published online today in the journal Nanotechnology,* the Lilliputian chamber is a prototype for future tools with custom-designed surfaces to manipulate and measure different types of nanoparticles in solution.

Among the potential applications for this technology: the processing of nanomaterials for manufacturing; the separation and measuring of complex nanoparticle mixtures for drug delivery, gene therapy and nanoparticle toxicology; and the isolation and confinement of individual DNA strands for scientific study as they are forced to unwind and elongate (DNA typically coils into a ball-like shape in solution) within the shallowest passages of the device.

Nanofluidic devices are usually fabricated by etching tiny channels into a glass or silicon wafer with the same lithographic procedures used to manufacture circuit patterns on computer chips. These flat rectangular channels are then topped with a glass cover that is bonded in place. Because of the limitations inherent to conventional nanofabrication processes, almost all nanofluidic devices to date have had simple geometries with only a few depths. This limits their ability to separate mixtures of nanoparticles with different sizes or study the nanoscale behavior of biomolecules (such as DNA) in detail.

To solve the problem, NIST's Samuel Stavis and Michael Gaitan teamed with Cornell's Elizabeth Strychalski to develop a lithographic process to fabricate nanofluidic devices with complex 3-D surfaces. As a demonstration of their method, the researchers constructed a nanofluidic chamber with a "staircase" geometry etched into the floor. The "steps" in this staircaseeach level giving the device a progressively increasing depth from 10 nanometers (approximately 6,000 times smaller than the width of a human hair) at the top to 620 nanometers (slightly smaller than an average bacterium) at the bottomare what give the device its ability to manipulate nanoparticles by size in the same way a coin sorter separates nickels, dimes and quarters.

The NIST-Cornell nanofabrication process utilizes grayscale photolithography to build 3-D nanofluidic devices. Photolithography has been used for decades by the semiconductor industry to harness the power of light to engrave microcircuit patterns onto a chip. Circuit patterns are defined by templates, or photomasks, that permit different amounts of light to activate a photosensitive chemical, or photoresist, sitting atop the chip material, or substrate.

Conventional photolithography uses photomasks as "black-or-white stencils" to remove either all or none of the photoresist according to a set pattern. The "white" parts of the patternthose that let light throughare then etched to a single depth into the substrate. Grayscale photolithography, on the other hand, uses "shades of gray" to activate and sculpt the photoresist in three dimensions. In other words, light is transmitted through the photomask in varying degrees according to the "shades" defined in the pattern. The amount of light permitted through determines the amount of exposure of the photoresist, and, in turn, the amount of photosensitive chemical removed after development.

The NIST-Cornell nanofabrication process takes advantage of this characteristic, allowing the researchers to transfer a 3-D pattern for nanochannels of numerous depths into a glass substrate with nanometer precision using a single etch.

The result is the "staircase" that gives the 3-D nanofluidic device its versatility.

Size exclusion of nanoparticles and confinement of individual DNA strands in the 3-D nanofluidic device is accomplished using electrophoresis, the method of moving charged particles through a solution by forcing them forward with an applied electric field. In these novel experiments, the NIST-Cornell researchers tested their device with two different solutions: one containing 100-nanometer-diameter polystyrene spheres and the other containing 20-micrometer (millionth of a meter)-length DNA molecules from a virus that infects the common bacterium Escherichia coli. In each experiment, the solution was injected into the deep end of the chamber and then electrophoretically driven across the device from deeper to shallower levels. Both the spheres and DNA strands were tagged with fluorescent dye so that their movements could be tracked with a microscope.

In the trials using rigid nanoparticles, the region of the 3-D nanofluidic device where the channels were less than 100 nanometers in depth stayed free of the particles. In the viral DNA trials, the genetic material appeared as coiled in the deeper channels and elongated in the shallower ones. These results show that the 3-D nanofluidic device successfully excluded rigid nanoparticles based on size and deformed (uncoiled) the flexible DNA strands into distinct shapes at different steps of the staircase.

Currently, the researchers are working to separate and measure mixtures of different-sized nanoparticles and investigate the behavior of DNA captured in a 3-D nanofluidic environment.

In a previous project, the NIST-Cornell researchers used heated air to create nanochannels with curving funnel-shaped entrances in a process they dubbed "nanoglassblowing." Like its new 3-D cousin, the nanoglassblown nanofluidic device facilitates the study of individual DNA strands. More information on nanoglassblowing may be found in the June 10, 2008, issue of NIST Tech Beat at http://www.nist.gov/public_affairs/techbeat/tb2008_0610.htm#glass.


'/>"/>

Contact: Michael E. Newman
michael.newman@nist.gov
301-975-3025
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. New approach builds better proteins inside a computer
2. GM, Coskata partnership builds on Oklahoma State University biofuels research
3. Laminin builds the neuromuscular synapse
4. The best both of worlds -- how to have sex and survive
5. Quantum weirdness, parallel worlds, dinosaur poop, and the ultimate fate of the universe...
6. Which came first, the moth or the cactus?
7. First all-African GM crop is resistant to maize streak virus
8. Scientists retrace evolution with first atomic structure of an ancient protein
9. CU-Boulder team discovers first ancient manioc fields in Americas
10. First finding of a metabolite in 1 sex only
11. First orchid fossil puts showy blooms at some 80 million years old
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NIST-Cornell team builds world's first nanofluidic device with complex 3-D surfaces
(Date:3/23/2017)... 23, 2017 Research and Markets has announced ... & Trends - Industry Forecast to 2025" report to their ... The ... CAGR of around 8.8% over the next decade to reach approximately ... the market estimates and forecasts for all the given segments on ...
(Date:3/20/2017)... PMD Healthcare announces the release of its ... System (WMS), a remote, real-time lung health monitoring and ... is a Medical Device, Digital Health, and Chronic Care ... innovative solutions that empower people to improve their healthcare ... developed the first ever personal spirometer, Spiro PD, which ...
(Date:3/7/2017)... BRIGHTON, England , March 7, 2017 Brandwatch ... been chosen by The Prince,s Trust to uncover insights ... insights across The Trust. The UK,s leading youth charity ... track social campaign results and get a better understanding of the ... ...
Breaking Biology News(10 mins):
(Date:4/19/2017)... FRANCISCO, Calif. , April 19, 2017 /PRNewswire/ ... VCYT ) today announced that it will report ... of market on Wednesday, May 3, 2017. Following the ... webcast at 4:30 p.m. Eastern Time to discuss the company,s ... live webcast and subsequent replay may be accessed ...
(Date:4/18/2017)... ... April 18, 2017 , ... ... conductivity readings to concentration levels and vice-versa. , One of the key applications ... strength in concentration control or monitoring. The principle of this analytical method is ...
(Date:4/18/2017)... , ... April 18, 2017 , ... For a historic ... co-members in the VaxCorps vaccine consortium, were named one of the top two Clinical ... the inception of this category; winning the award four times previously, and first runner ...
(Date:4/18/2017)... ... 18, 2017 , ... Cancer diagnostics and pathology workflow solution ... the role of Chief Medical Officer (CMO) – Precision Medicine, overseeing strategic planning ... considered a visionary leader in precision medicine, and he has extensive experience in ...
Breaking Biology Technology: