Navigation Links
NIH grant funds Boston College research into illnesses afflicting people living with HIV

CHESTNUT HILL, MA (February 11, 2013) Boston College biologist Ken Williams, whose research focuses on the role of immunological cells in a range of illnesses that strike people living with HIV and AIDS, has been awarded a five-year, $2.7 million grant from the NIH's National Institute of Neurological Disorders and Stroke.

The award marks the third round of funding for Williams' research into monocyte and macrophage cells, which play important roles as part of the body's immunological response. Williams and his research team have linked the activity of these cells to the presence of debilitating conditions like dementia, cardiovascular disease and nerve damage that strike patients living with HIV or AIDS even though they have effectively muted the virus with drug therapies.

"Even though drug regimens can control HIV to the point where the virus is almost undetectable in people living with HIV, our lab has shown specific cells and cellular activity are the telltale signs of other lethal diseases that strike these patients as well as indicators of viral reservoirs with the power to revive the virus," said Williams. "With the support of the NIH, we are now pursuing advances that could lead to new therapies able to control the virus and its debilitating effects."

The latest grant will support the Williams lab's efforts to define the cell types in the brain that contribute to an HIV viral reservoir, which effectively harbors the virus even if it is almost undetectable in patients taking anti-retroviral therapy (ART) drugs. While patients on ART show few to none of the detectable signs of the illness, the virus rebounds when the patients are taken off ARTs. These patients also experience chronic immune activation of monocytes and macrophages, both of which the lab has identified as cell types from which the virus returns.

Williams said the latest round of funding will support work to define cell types in the blood and the brain that serve as viral reservoirs and reveal how these viral stores are established and maintained in the brain.

The team will use traditional ART drugs and a new orally administered form of a drug that specifically targets infected monocytes and macrophages. It would be the first time researchers have paired another drug with traditional ART in an effort to target the macrophage reservoir of HIV.

In addition, the Williams research team will use the twin therapeutics to target viral cells that attempt to migrate from the brain and back into the body, where they can serve as a source of virus that can re-seed the body.

Earlier research by the lab has effectively marked a special population of brain macrophages and allowed researchers to track these cells as they travel via the lymphatic system through cranial nerves and sinuses. Williams and colleagues at the University of California San Francisco hope to show the new drug and ART can stop the brain-to-body migration of the virus in patients with HIV.


Contact: Ed Hayward
Boston College

Related biology news :

1. Environmental factors determine whether immigrants are accepted by cooperatively breeding animals
2. Brainwave "Balancing" Research Receives $1 Million Grant From The Susanne Marcus Collins Foundation, Inc.
3. Damon Runyon Cancer Research Foundation grants prestigious awards to 17 young scientists
4. Grant to fund development of drug candidates for rheumatoid arthritis, neurodegenerative disorders
5. USDA grant advancing deadly plant disease, insect research
6. Salk Institute awarded historic $42 million grant from the Helmsley Charitable Trust
7. Childrens Hospital of Philadelphia receives federal grant to improve health care decision-making
8. AgriLife Research gets grant to crack biofuel production waste issue
9. Damon Runyon-Rachleff Innovation Awards granted for pioneering ideas in cancer research
10. Italian immigrants live longer
11. Grant funded to improve mothers nutrition before pregnancy and impact on baby
Post Your Comments:
Related Image:
NIH grant funds Boston College research into illnesses afflicting people living with HIV
(Date:6/9/2016)... in attendance control systems is proud to announce the introduction of fingerprint attendance control ... right employees are actually signing in, and to even control the opening of doors. ... ... ... Photo - ...
(Date:6/2/2016)... NEW YORK , June 2, 2016   The ... (Weather), is announcing Watson Ads, an industry-first capability in which ... advertising, by being able to ask questions via voice or ... Marketers have long ... with the consumer, that can be personal, relevant and valuable; ...
(Date:5/16/2016)... YORK , May 16, 2016   EyeLock ... solutions, today announced the opening of an IoT Center ... to strengthen and expand the development of embedded iris ... an unprecedented level of convenience and security with unmatched ... authenticate one,s identity aside from DNA. EyeLock,s platform uses ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... Apellis Pharmaceuticals, Inc. today announced positive ... its complement C3 inhibitor, APL-2. The trials were ... studies designed to assess the safety, tolerability, pharmacokinetics ... healthy adult volunteers. Forty subjects were ... dose (ranging from 45 to 1,440mg) or repeated ...
(Date:6/23/2016)... , June 23, 2016 On ... session at 4,833.32, down 0.22%; the Dow Jones Industrial Average ... 500 closed at 2,085.45, down 0.17%. has initiated coverage ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ), Aralez ... Inc. (NASDAQ: BIND ). Learn more about these ...
(Date:6/23/2016)... Connecticut (PRWEB) , ... June 23, 2016 , ... ... introduce a new line of intelligent tools designed, tuned and optimized exclusively for ... September 12–17 in Chicago. The result of a collaboration among several companies with ...
(Date:6/22/2016)... 22, 2016 Cell Applications, Inc. and ... to produce up to one billion human induced ... one week. These high-quality, consistent stem cells enable ... and spend more time doing meaningful, relevant research. ... high-volume manufacturing process that produces affordable, reliable HiPSC ...
Breaking Biology Technology: