Navigation Links
NIH funds next phase of Tissue Chip for Drug Screening program

The National Institutes of Health will award funds to support the next phase of its Tissue Chip for Drug Screening program to improve ways of predicting drug safety and effectiveness. Researchers will collaborate over three years to refine existing 3-D human tissue chips and combine them into an integrated system that can mimic the complex functions of the human body. Led by the National Center for Advancing Translational Sciences (NCATS), the program will support 11 institutions at $17 million in 2014 with additional support over the remaining two years if funds are available.

Because these tissue chip systems will closely mimic human function, scientists can probe the tissue chips in ways that they aren't able to do in people, and the knowledge gained may provide critical clues to disease progression and insights into the development of potential therapeutics.

Fifteen NIH Institutes and Centers are involved in the coordination of this program. Current funding is being provided by NCATS, the National Institute for Biomedical Imaging and Bioengineering, the National Cancer Institute, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Environmental Health Sciences, NIH Common Fund, and NIH Office of Research on Women's Health.

Researchers create human tissue chips using techniques that result in miniature models of living organ tissues on transparent microchips. Ranging in size from a quarter to a house key, the chips are lined with living cells and contain features designed to replicate the complex biological functions of specific organs.

"The development of tissue chips is a remarkable marriage of biology and engineering, and has the potential to transform preclinical testing of candidate treatments, providing valuable tools for biomedical research," said NIH Director Francis S. Collins, M.D., Ph.D.

Approximately 80 percent of candidate drugs fail in human clinical trials because they are found to be unsafe or ineffective. More than 30 percent of promising medications fail due to toxicity, despite promising preclinical studies in animal and cell models. These models can be costly and poor predictors of drug response in humans.

"NCATS aims to get more treatments to more patients more efficiently," said NCATS Director Christopher P. Austin, M.D. "That is exactly why we are supporting the development of human tissue chip technology, which could be revolutionary in providing a faster, more cost-effective way of predicting the failure or success of drugs prior to investing in human clinical trials."

NIH's Tissue Chip for Drug Screening initiative is a collaboration between the NIH, Defense Advanced Research Projects Agency (DARPA) and U.S. Food and Drug Administration. NIH has committed nearly $76 million over the course of the five-year program, which was launched in fiscal year 2012.

In the first two years of the program, researchers developed individual human tissue chips that demonstrated organ functionality, mimicked human biological responses, and generated more accurate data than conventional cell and animal testing methods. Tissue chips include those for the heart, liver, blood-brain barrier, blood vessels, kidney, gastrointestinal system, nervous system, adipose (fat), and models of tumors and metastasis (the spread of cancer). In addition, chips mimicking both male and female reproductive systems will be critical to evaluating differences in response to drug exposure.

While researchers can use individual chips to study single tissue and organ responses, the integration of chips into a human-like system will enable the real-time measurement of the effects of a drug. The effects will be measured within and across various organs and tissues by which a drug is introduced into the human body, such as the liver and digestive system, as well as the drug's effectiveness in the organ or tissue it targets, such as the kidney or heart.

The NIH award recipients are listed below. For more details about each project, visit

Columbia University Health Sciences, New York City
Integrated heart-liver-vascular systems for drug testing in human health and disease
Gordana Vunjak-Novakovic, Ph.D.

Duke University, Durham, North Carolina
Circulatory system and integrated muscle tissue for drug and tissue toxicity
George A. Truskey, Ph.D.

Harvard University, Cambridge, Massachusetts
Human cardio-pulmonary system-on-a-chip
Kevin K. Parker, Ph.D.

Massachusetts Institute of Technology (MIT), Cambridge
All-human microphysical model of metastasis therapy
Linda Griffith, Ph.D.

Morgridge Institute for Research at the University of WisconsinMadison
Human-induced pluripotent stem cell and embryonic stem cell-based models for predictive neural toxicity and teratogenicity
James A. Thomson, V.M.D., Ph.D.

Northwestern University, Evanston, Illinois
Ex vivo female productive tract integration in a 3-D microphysiologic system
Teresa Woodruff, Ph.D.

University of California, Berkeley
Disease-specific integrated microphysiological human tissue models
Kevin E. Healy, Ph.D.

University of Pittsburgh
A 3-D biomimetic liver sinusoid construct for predicting physiology and toxicity D. Lansing Taylor, Ph.D.

University of Washington, Seattle
A tissue-engineered human kidney microphysiological system
Jonathan Himmelfarb, M.D.

Vanderbilt University, Nashville, Tennessee
Neurovascular unit-on-a-chip: Chemical communication, drug and toxin responses
John P. Wikswo, Ph.D.

Washington University in St. Louis
An integrated in vitro model of perfused tumor and cardiac tissue
Steven C. George, M.D., Ph.D.

Two project teams funded by DARPA will work with the NIH researchers to develop the platforms that are able to support 10 organ systems. Researchers from the NIH and DARPA programs have formed a successful and productive partnership that fosters collaborations and shared resources.

During the next phase, researchers also will increase the use of induced pluripotent stem cell (iPSC) technology as a renewable human cell source for their systems. iPSCs are derived from adult cells that can be reprogrammed into embryonic-like cells, which can then be turned into other tissues. A goal of the Tissue Chip for Drug Screening program is to increase efforts to create a single iPSC line that can differentiate and mature into all major organ systems in the human body. Currently, researchers can use iPS cells to generate different tissues that are used in some of the tissue chips. However, no single iPS cell line can yet produce all the needed major organ tissues. Program researchers aim to tackle this problem and share their methods with the research community to galvanize this field of research.

To learn more about the Tissue Chip for Drug Screening program, visit

Grants: UH3TR000481-03; UH3TR000496-03; UH3TR000504-03; UH3TR000487-03; UH3TR000522-03; UH3TR000506-03; UH3TR000505-03; UH3EB017103-03; UH3TR000491-03; UH2ES022920-03; UH3TR000503-03


Contact: Geoff Spencer
NIH/National Center for Advancing Translational Sciences (NCATS)


Related biology news :

1. Researchers at GW receive federal funds to study the effect earthquakes have on nuclear reactors
2. NIH funds development of tissue chips to help predict drug safety
3. WaterSMART funds $1.7 million for science projects in desert and southern Rockies LCCs
4. EU FET program funds research on 3D neuronal structures mimicking human brain tissue
5. CIRM funds 6 UC San Diego stem cell researchers
6. NASA funds SAO instrument to track North American air pollution
7. Inspired: Canada funds 68 bold, inventive ways to improve health, save lives in developing countries
8. Energy Deptartment funds UW project to turn wasted natural gas into diesel
9. NIH grant funds Boston College research into illnesses afflicting people living with HIV
10. NIH funds research to identify Parkinsons biomarkers
11. March of Dimes funds new preterm birth research
Post Your Comments:
(Date:8/1/2019)... ... 01, 2019 , ... USDM Life Sciences (USDM) announces that Jay Crowley, Vice ... webinar addressing challenges with the upcoming EU MDR IVDR regulations . ... a variety of positions over his 26 years at the FDA, including developing the ...
(Date:7/23/2019)... Calif. (PRWEB) , ... July 22, 2019 , ... Personalized ... for a New Drug (IND) application for use of a person’s own adipose-derived stem ... uses stem cells as a treatment of osteoarthritis in the knee. , ...
(Date:7/17/2019)... ... July 18, 2019 , ... ... Meredith James, HT, PMP, to its executive team as Vice President of Operations. ... drug development. In her new role, Ms. James is responsible for ensuring on-time ...
Breaking Biology News(10 mins):
(Date:7/19/2019)... Mass. (PRWEB) , ... July 18, 2019 , ... ... (Physik Instrumente) announced their investment to enlarge their current piezo motion facilities in ... will offer 3 floors for multilayer piezo ceramic assembly production in addition to ...
(Date:7/17/2019)... ... July 15, 2019 , ... CRISPR is often thought of ... trait can be removed, replaced, or edited, but Yiping Qi, assistant professor in Plant ... traditional applications in his latest publication in Nature Plants. In this comprehensive review, Qi ...
(Date:7/17/2019)... ... July 16, 2019 , ... ... a recent report from Kalorama Information. Abbott, Roche and Siemens Healthineers and Response ... Information’s latest report, Worldwide Market for Point-of-Care (POC) Diagnostics . , Quidel ...
(Date:7/9/2019)... ... July 08, 2019 , ... Today, at the BIO ... National Corn Growers Association (NCGA) announced the winners of the Consider Corn Challenge ... or process using field corn to produce biobased materials. , “Corn is a ...
Breaking Biology Technology: