Navigation Links
NIH awards Penn scientists $10 million over 5 years for innovative research on single cells
Date:11/14/2012

PHILADELPHIA James Eberwine, PhD, Elmer Holmes Bobst Professor of Pharmacology in the Perelman School of Medicine, and Junhyong Kim, PhD, Edmund J. and Louise W. Kahn Professor of Biology in the School of Arts and Sciences, will be studying the role of how messenger RNA (mRNA) molecules vary in their function in individual cells with a five-year, $10 million grant from the National Institutes of Health (NIH). Their award is supported by the NIH Common Fund and is part of three initiatives of the Single Cell Analysis Program (SCAP). Eberwine and Kim are also Co-directors of the Penn Genomic Frontiers Institute.

The goal of the Penn grant is to characterize the variability in identity and abundances of RNA molecules that are transcribed from the genome of human neurons and heart cells. These are the so-called excitable cells, those that use bioelectricity for communication and everyday functions. Many human nervous system diseases derive from changes in electrical responsiveness of neurons and heart arrhythmias account for many heart-related deaths.

There are considerable cell-to-cell differences in function associated with normal environmental stimuli and in dysfunction associated with disease in excitable cells. This is likely involved in why cells respond differently to such stimuli as drugs and disease proteins. Understanding this variation may provide insights into how cells respond individually and in coordinated groups to aging and disease challenges.

The Penn team proposes to look at the extent of single-cell variation for the entire transcriptome of different excitable cell types and also for a subset of mRNAs that encode therapeutically important molecules called G protein-couple receptors.

They will combine key technologies developed in the Eberwine and Kim labs to approach single-cell variation. The Eberwine lab developed the methods for single-cell mRNA analysis including a novel functional genomics technology called Transcriptome Induced Phenotype Remodeling, or TIPeR, to manipulate the mRNA of excitable cells. TIPeR uses RNA populations to direct the DNA in the host nucleus to change the cell's RNA populations to that of a destination cell type, which in turn changes the phenotype of the cell by resulting in the expression of different genes.

The Eberwine lab was the first to develop such RNA reprogramming technologies. There are about 100,000 mRNA molecules in a neuron at any one time. TIPeR permits all or a fraction of these mRNAs to be moved between live cells where they will modify recipient cell function in ways that can analyzed.

The Kim lab developed novel computational analysis tools and systems-biology models for analyzing single cell variation. These include new algorithms and statistical methods for characterizing RNA sequencing data from single cells and a systems-biology model that frames RNA population of cells as dynamic systems with key functional constraints defining allowable variability of different cell types and how they change with a cell's microenvironment. The two labs have been working together for the past six years, integrating state-of-art molecular biology, neuroscience, and computational biology.

This is an interdisciplinary effort requiring the expertise of clinical and basic scientists, including neurosurgeons and cardiologists. Co-investigators involved in this project include Sean Grady, MD, Charles Harrison Frazier Professor and Chairman of Neurosurgery at the Perelman School of Medicine, Jai-Yoon Sul, assistant professor of Pharmacology, Tamas Bartfai, PhD, the Scripps Research Institute and Bernhard Kuhn, MD, Assistant Professor of Pediatrics, Boston Children's Hospital.

One Cell at a Time

Single cell analysis emerged as an important field of research after new technologies with improved sensitivity made it possible to measure cell-to-cell differences in living organisms and correlate the variation with changes in biological function and disease processes.

By profiling individual cells, researchers can identify rare cell types as well as alterations in the health or condition of specific cells that may relate to functional changes and to determine the influence of cellular organization and environment on such cells and states. The long-term goal of the SCAP is to accelerate the move towards personalizing health to the cellular level by understanding the link between cell variation, tissue and organ function, and emergence of disease.

Overall, the NIH to accelerate the development and application of single cell analysis across a variety of fields. The goal is to understand what makes individual cells unique and to pave the way for medical treatments that are based on disease mechanisms at the cellular level.

"The development of new technologies that can detect differences between individual cells within the same tissue is crucial to our understanding of a wide variety of diseases," said NIH Director Francis S. Collins, M.D., Ph.D. "This Common Fund Program is an excellent example of how the NIH can accelerate the pace of biomedical discovery."

The Single Cell Analysis Program will fund three research centers that will work together to identify patterns of gene expression in individual human cells within a variety of tissues including the brain, heart, placenta, and olfactory system. The goal is to reveal previously undetectable differences in the molecular composition of individual cells; this will offer a new way to categorize cells using a genetic signature. The funded groups will be managed as an integrated network to maximize collaboration. All data and protocols will be made available to the research community.


'/>"/>

Contact: Karen Kreeger
karen.kreeger@uphs.upenn.edu
215-349-5658
University of Pennsylvania School of Medicine
Source:Eurekalert

Related biology news :

1. Space research institute awards postdoctoral fellowships to 4 scientists
2. Space research institute awards postdoctoral fellowships to four scientists
3. Marc Travel Awards announced for the 2012 Biomedical Engineering Society Annual Meeting
4. MARC travel awards announced for 2012 American Society for Bone & Mineral Research annual meeting
5. MARC travel awards announced for the 2012 APS Integrative Biology of Exercise meeting
6. MARC travel awards announced for the 2012 SACNAS Annual Meeting
7. A rare feat: 2 scientists at Salk score NIH New Innovator Awards
8. NIBIB and HHMI announce graduate biomedical training awards
9. State stem cell research funding agency awards $37.3 million to aid UC Irvine efforts
10. 2013 Rosalind Franklin Young Investigator Awards announced
11. 2012 Science in Society Journalism Awards announced
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/28/2017)... , March 28, 2017 The ... Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, ... Region - Global Forecast to 2022", published by MarketsandMarkets, ... 2016 and is projected to reach USD 75.64 Billion ... and 2022. The base year considered for the study ...
(Date:3/24/2017)... 24, 2017 The Controller General of Immigration from ... Abdulla Algeen have received the prestigious international IAIR Award for the ... Continue Reading ... ... Controller Abdulla Algeen (small picture on the right) have received the IAIR ...
(Date:3/23/2017)... The report "Gesture Recognition and Touchless Sensing Market by Technology (Touch-based ... to 2022", published by MarketsandMarkets, the market is expected to be worth USD ... 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. ... Cancer Research, London (ICR) and University ... SKY92, SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma ... MUK nine . The University of Leeds ... partly funded by Myeloma UK, and ICR will perform the ...
(Date:10/10/2017)... ... 2017 , ... San Diego-based team building and cooking events company, Lajollacooks4u, has ... The bold new look is part of a transformation to increase awareness, appeal to ... period. , It will also expand its service offering from its signature gourmet cooking ...
(Date:10/10/2017)... 10, 2017 International research firm Parks Associates announced ... at the TMA 2017 Annual Meeting , October 11 in ... residential home security market and how smart safety and security products impact ... Parks Associates: Smart Home ... "The residential security market has ...
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
Breaking Biology Technology: