Navigation Links
NIBIB invests in quantum research
Date:10/5/2007

The National Institute of Biomedical Imaging and Bioengineering (NIBIB), part of the National Institutes of Health (NIH), today announced the award of more than $12 million in grants to support research and development of potentially high-impact, innovative technologies to advance health care.

The new grants will fund four investigators in developing groundbreaking technologies: disposable microchips for the diagnosis of metastatic lung cancer, a bio-artificial kidney to eliminate dialysis procedures, insulin-producing cells to treat diabetes, and nanoparticles that selectively leave the blood and bind to cancer cells to assist in removal of brain tumors.

This innovative program from the NIBIB promises to harness the power of technological discovery and team science to translate new knowledge into practical healthcare benefits for our nation, said Elias A. Zerhouni, M.D., NIH director.

The overall goal of the NIBIB Quantum Grants program is to make a profound (quantum level) advance in health care by funding research on targeted projects that will develop new technologies and modalities for the diagnosis, treatment, or prevention of disease.

We are excited to be awarding these Quantum Grants to four excellent researchers and their interdisciplinary teams, said NIBIB director Roderic I. Pettigrew, Ph.D., M.D. We look forward to watching the extraordinary results that will be achieved as these studies progress. All four of these projects have the potential to significantly improve the current practice of medicine.

Anthony Atala, M.D., Wake Forest University Health Sciences
$3.2 million (3 years)
Insulin Producing Cells from Amniotic Stem Cells for Diabetes Therapy

Diabetes impacts the individuals afflicted and society as a whole due to the significant complications associated with using existing insulin treatment strategies. The aim of this project is to develop a new source of insulin secreting cells as a replacement strategy for treating diabetes. Transplantation of pancreatic islets to restore insulin production is promising; however, the donor pancreata are in short supply and do not meet medical needs. The development of these tissue engineered islets will provide a new source of insulin-producing cells and help realize the full potential of cell therapy for diabetes.

Raoul Kopelman, Ph.D., University of Michigan at Ann Arbor
$2.6 million (3 years)
Nanoparticle Enabled Intraoperative Imaging and Therapy

Brain cancer is one of the most lethal forms of cancer, and is diagnosed in over 43,000 new patients each year. The goal of this project is to improve surgical resection and treatment options for brain cancer patients. Dr. Kopelman and his team will develop nanoparticles that selectively leave the blood and bind to cancer cells. These nanoparticles will aid in the visualization of tumors to allow for maximal surgical resection of tumor mass and also facilitate nonsurgical destruction of the residual cancer cells that are remote or extend from the tumor mass. This may achieve significant improvement in treatment of brain tumors.

Shuvo Roy, Ph.D., Cleveland Clinic Lerner College of Medicine-CWRU
$3.2 million (3 years)
Miniaturized Implantable Renal Assist Device for Total Renal Replacement Therapy

End stage renal disease is a significant global health problem. Donor kidneys for transplantation are in short supply, with dialysis and filtration as the only alternative treatment. This investigator and his team will develop a miniaturized, implantable, and self-regulating bio-artificial kidney that takes the dialysis machinery and integrates it into a miniaturized implantable device. The successful development of this bio-artificial kidney would provide an alternative to the majority of the dialysis procedures performed annually in the U.S.

Mehmet Toner, Ph.D., Massachusetts General Hospital
$3.4 million (3 years)
Point-of-Care Microfluidics in Lung Cancer

The goal of this project is to develop a point-of-care microchip device that can determine the type, severity, and aggressiveness of a wide range of cancers by detecting tumor cells that are circulating in the blood stream. Dr. Toner and his team will develop a new disposable microchip technology capable of separating specific circulating tumor cells from whole human blood at concentrations as low as one in a billion. Detecting the presence of these tumor cells at such low concentrations enables earlier intervention in the treatment of metastatic lung cancer, which remains the leading cause of cancer death in the U.S. This point of care test can potentially transform patient care through early molecular diagnosis of lung cancer and identification of new biomarkers with which to track disease progression.


'/>"/>

Contact: Cheryl Fee
feech@mail.nih.gov
301-451-6772
NIH/National Institute of Biomedical Imaging & Bioengineering
Source:Eurekalert

Related biology news :

1. Canadas new government invests $200M in the fight against the mountain pine beetle
2. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
3. Quantum dots provide a faster, more sensitive method for detecting respiratory viral infections
4. Method slashes quantum dot costs by 80 percent
5. New nanosensor uses quantum dots to detect DNA
6. Connect the Quantum Dots
7. Quantum dots reviewed -- Could these nanoparticles hold the cure to cancer?
8. First Quantum Grant to fund stem cell repair of damage from stroke
9. Protein enables discovery of quantum effect in photosynthesis
10. Researchers discover way to make cells in the eye sensitive to light
11. Columbia research lifts major hurdle to gene therapy for cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/9/2016)... , June 9, 2016 ... deploy Teleste,s video security solution to ensure the safety of ... during the major tournament Teleste, an ... systems and services, announced today that its video security solution ... to back up public safety across the country. The ...
(Date:6/2/2016)... 2016   The Weather Company , an IBM Business ... industry-first capability in which consumers will be able to interact ... questions via voice or text and receive relevant information about ... Marketers have long sought an advertising solution that can ... personal, relevant and valuable; and can scale across millions of ...
(Date:5/20/2016)... May 20, 2016  VoiceIt is excited to ... VoicePass. By working together, VoiceIt and ... VoiceIt and VoicePass take slightly different approaches to ... both security and usability. ... this new partnership. "This marketing and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf ... join the faculty of the University of North Carolina Kenan-Flagler Business School ... and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international efforts, ...
(Date:6/24/2016)... Brooklyn, NY (PRWEB) , ... June 24, 2016 , ... ... 15mm, machines such as the Cary 5000 and the 6000i models are higher end ... height is the height of the spectrophotometer’s light beam from the bottom of the ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
Breaking Biology Technology: