Navigation Links
NIBIB invests in quantum research
Date:10/5/2007

The National Institute of Biomedical Imaging and Bioengineering (NIBIB), part of the National Institutes of Health (NIH), today announced the award of more than $12 million in grants to support research and development of potentially high-impact, innovative technologies to advance health care.

The new grants will fund four investigators in developing groundbreaking technologies: disposable microchips for the diagnosis of metastatic lung cancer, a bio-artificial kidney to eliminate dialysis procedures, insulin-producing cells to treat diabetes, and nanoparticles that selectively leave the blood and bind to cancer cells to assist in removal of brain tumors.

This innovative program from the NIBIB promises to harness the power of technological discovery and team science to translate new knowledge into practical healthcare benefits for our nation, said Elias A. Zerhouni, M.D., NIH director.

The overall goal of the NIBIB Quantum Grants program is to make a profound (quantum level) advance in health care by funding research on targeted projects that will develop new technologies and modalities for the diagnosis, treatment, or prevention of disease.

We are excited to be awarding these Quantum Grants to four excellent researchers and their interdisciplinary teams, said NIBIB director Roderic I. Pettigrew, Ph.D., M.D. We look forward to watching the extraordinary results that will be achieved as these studies progress. All four of these projects have the potential to significantly improve the current practice of medicine.

Anthony Atala, M.D., Wake Forest University Health Sciences
$3.2 million (3 years)
Insulin Producing Cells from Amniotic Stem Cells for Diabetes Therapy

Diabetes impacts the individuals afflicted and society as a whole due to the significant complications associated with using existing insulin treatment strategies. The aim of this project is to develop a new source of insulin secreting cells as a replacement strategy for treating diabetes. Transplantation of pancreatic islets to restore insulin production is promising; however, the donor pancreata are in short supply and do not meet medical needs. The development of these tissue engineered islets will provide a new source of insulin-producing cells and help realize the full potential of cell therapy for diabetes.

Raoul Kopelman, Ph.D., University of Michigan at Ann Arbor
$2.6 million (3 years)
Nanoparticle Enabled Intraoperative Imaging and Therapy

Brain cancer is one of the most lethal forms of cancer, and is diagnosed in over 43,000 new patients each year. The goal of this project is to improve surgical resection and treatment options for brain cancer patients. Dr. Kopelman and his team will develop nanoparticles that selectively leave the blood and bind to cancer cells. These nanoparticles will aid in the visualization of tumors to allow for maximal surgical resection of tumor mass and also facilitate nonsurgical destruction of the residual cancer cells that are remote or extend from the tumor mass. This may achieve significant improvement in treatment of brain tumors.

Shuvo Roy, Ph.D., Cleveland Clinic Lerner College of Medicine-CWRU
$3.2 million (3 years)
Miniaturized Implantable Renal Assist Device for Total Renal Replacement Therapy

End stage renal disease is a significant global health problem. Donor kidneys for transplantation are in short supply, with dialysis and filtration as the only alternative treatment. This investigator and his team will develop a miniaturized, implantable, and self-regulating bio-artificial kidney that takes the dialysis machinery and integrates it into a miniaturized implantable device. The successful development of this bio-artificial kidney would provide an alternative to the majority of the dialysis procedures performed annually in the U.S.

Mehmet Toner, Ph.D., Massachusetts General Hospital
$3.4 million (3 years)
Point-of-Care Microfluidics in Lung Cancer

The goal of this project is to develop a point-of-care microchip device that can determine the type, severity, and aggressiveness of a wide range of cancers by detecting tumor cells that are circulating in the blood stream. Dr. Toner and his team will develop a new disposable microchip technology capable of separating specific circulating tumor cells from whole human blood at concentrations as low as one in a billion. Detecting the presence of these tumor cells at such low concentrations enables earlier intervention in the treatment of metastatic lung cancer, which remains the leading cause of cancer death in the U.S. This point of care test can potentially transform patient care through early molecular diagnosis of lung cancer and identification of new biomarkers with which to track disease progression.


'/>"/>

Contact: Cheryl Fee
feech@mail.nih.gov
301-451-6772
NIH/National Institute of Biomedical Imaging & Bioengineering
Source:Eurekalert

Related biology news :

1. Canadas new government invests $200M in the fight against the mountain pine beetle
2. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
3. Quantum dots provide a faster, more sensitive method for detecting respiratory viral infections
4. Method slashes quantum dot costs by 80 percent
5. New nanosensor uses quantum dots to detect DNA
6. Connect the Quantum Dots
7. Quantum dots reviewed -- Could these nanoparticles hold the cure to cancer?
8. First Quantum Grant to fund stem cell repair of damage from stroke
9. Protein enables discovery of quantum effect in photosynthesis
10. Researchers discover way to make cells in the eye sensitive to light
11. Columbia research lifts major hurdle to gene therapy for cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/8/2016)... MANCHESTER, United Kingdom , Jan. 8, 2016 /PRNewswire/ ... sensor-based diagnostic products, today announced the closing of a $9 ... investors.  Proceeds from the financing will be used to accelerate ... device for detecting early-stage pressure ulcers. ... after receiving CE Mark approval. The device,s introduction has been ...
(Date:1/7/2016)... 2016 This BCC Research report studies the ... and devices, identifying newer markets and exploring the expansion ... biometric devices. Includes forecast from 2015 to 2020. ... and explore the expansion of the present application market ... of biometric technology, determine its current market size, and ...
(Date:1/7/2016)... 7, 2016  A United States District Court in ... in the country to interpret a biometric privacy statute ... forward against the photo website Shutterfly brought by the law ... NORBERG vs. SHUTTERFLY, INC.; and THISLIFE, INC ( ... Shutterfly violates the Illinois Biometric Privacy Act by collecting ...
Breaking Biology News(10 mins):
(Date:2/4/2016)... Md. , Feb. 4, 2016  Spherix Incorporated ... to the fostering and monetization of intellectual property, today ... and Uniden in the Northern District of ... moving forward.  Inter Partes Re-examination ... U.S. Patent Office.  The IPR was initiated on only ...
(Date:2/4/2016)... , February 4, 2016 Strasbourg, ... (ABL), Inc. --> Strasbourg, France , ... --> PharmaVentures is pleased to announce that it acted ... biopharmaceutical manufacturing unit in Strasbourg, France , ... --> --> Transgene (Euronext: TNG), ...
(Date:2/3/2016)... , Feb. 3, 2016  Discovery Laboratories, Inc. ... on developing aerosolized KL4 surfactant therapies for respiratory ... has approved an inducement award as a component ... its newly appointed President and Chief Executive Officer.  ... Committee on February 1, 2016 and granted as ...
(Date:2/3/2016)... Feb. 3, 2016 Harvard Apparatus Regenerative ... company developing bioengineered organ implants for life-threatening conditions ... that CEO Jim McGorry , will present ... on Tuesday, February 9, 2016 at 8:00 ... . HART,s presentation will be webcast live ...
Breaking Biology Technology: