Navigation Links
NC State researchers identify genes key to hormone production in plants
Date:4/3/2008

Researchers at North Carolina State University have pinpointed a small group of genes responsible for telling plants when, where and how to produce a hormone that is key to their development. Their findings shed light on the ways in which hormone production in plants affects both a plants growth and its ability to adapt to changing environments.

Dr. Jose Alonso, assistant professor of genetics, and a team of geneticists and plant biologists from NC State, Germany and the Czech Republic conducted the research. Their findings are published in the April 4 edition of the journal Cell.

Plant growth and development are regulated by a small number of hormones, which plants combine in various ways so that they can adapt to and thrive in changing environmental conditions. Auxin and ethylene are two of the most important of these growth-regulating hormones.

Scientists had previously established that plants respond differently to ethylene depending upon the type of plant tissue it is applied to, the developmental stage of the plant, and the surrounding environmental conditions. They also knew that the presence of auxin, another key growth-regulator, often served as a trigger for a plant to produce more ethylene, but were unsure of the ways in which auxin was synthesized.

Auxin controls almost every process in a plant, Alonso says, and so its very important to understand how and why auxin is produced within the plant.

In order to find out more about how auxin production is triggered, the NC State team identified a mutant strain of Arabidopsis or mustard weed that had a root system insensitive to the growth inhibitory effect of ethylene.

When the team looked at the genome of this mutant strain of mustard weed, they discovered that its lack of response to ethylene was due to the changes in a gene that they named TAA1. This gene produces a protein that is necessary for auxin synthesis. In a normal plant, the TAA1 gene recognizes the presence of ethylene as its signal to make proteins that in turn synthesize auxin, which controls growth.

The researchers found that if the TAA1 gene and two other related genes were knocked out or inactive, the plant had 50 percent less auxin than normal.

Their findings are the first to definitively establish a relationship between a particular family of genes, tissue-specific ethylene response, and auxin production in plants.

If we want to do intelligent manipulation of plants, to breed them so that they ripen at a certain rate, or so that theyre well-adapted to particular environments, then we need to understand more about the ways that these hormones interact or talk to each other, Alonso says. This research gives us concrete evidence for at least one way in which this happens.


'/>"/>

Contact: Tracey Peake
tracey_peake@ncsu.edu
919-515-6142
North Carolina State University
Source:Eurekalert  

Related biology news :

1. Obesity and the central nervous system -- the state of the art
2. University of Minnesota study refutes belief that black men have more aggressive prostate cancer
3. Iowa State University conference examines developing bioeconomy
4. University and state agencies to forecast local health effects of climate change
5. K-State Veterinary Lab routinely tests for bluetongue virus
6. New prostate cancer research findings
7. Iowa State professors genome research published in the latest issue of Science
8. Leading researchers to reveal comprehensive dos and donts for prostate cancer
9. K-State chemistry professor to receive Masao Horiba award
10. K-State sociologists use Department of Energy grant
11. NIH grants $33 M in institutional development awards to 3 states
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NC State researchers identify genes key to hormone production in plants
(Date:6/15/2016)... New York , June 15, 2016 /PRNewswire/ ... a new market report titled "Gesture Recognition Market by ... and Forecast, 2016 - 2024". According to the report, ... USD 11.60 billion in 2015 and is estimated ... reach USD 48.56 billion by 2024.  ...
(Date:6/7/2016)... -- Syngrafii Inc. and San Antonio Credit Union (SACU) ... Syngrafii,s patented LongPen™ eSignature "Wet" solution into SACU,s ... in greater convenience for SACU members and operational ... document workflow and compliance requirements. Logo ... Highlights: ...
(Date:6/2/2016)... The Weather Company , an IBM Business (NYSE: IBM ... which consumers will be able to interact with IBM Watson ... or text and receive relevant information about the product or ... long sought an advertising solution that can create a one-to-one ... valuable; and can scale across millions of interactions and touchpoints. ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... SANTA MONICA, Calif. , June 23, 2016  The Prostate Cancer ... to pioneer increasingly precise treatments and faster cures for prostate cancer. Members of ... 77 institutions across 15 countries. Read More About the ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample ... the Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application Specialist. ... said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our capacity ...
(Date:6/23/2016)... LONDON , June 23, 2016 ... & Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... Review , the peer-reviewed journal from touchONCOLOGY, ... the escalating cost of cancer care is placing ... a result of expensive biologic therapies. With the ...
Breaking Biology Technology: