Navigation Links
NC State researchers identify genes key to hormone production in plants
Date:4/3/2008

Researchers at North Carolina State University have pinpointed a small group of genes responsible for telling plants when, where and how to produce a hormone that is key to their development. Their findings shed light on the ways in which hormone production in plants affects both a plants growth and its ability to adapt to changing environments.

Dr. Jose Alonso, assistant professor of genetics, and a team of geneticists and plant biologists from NC State, Germany and the Czech Republic conducted the research. Their findings are published in the April 4 edition of the journal Cell.

Plant growth and development are regulated by a small number of hormones, which plants combine in various ways so that they can adapt to and thrive in changing environmental conditions. Auxin and ethylene are two of the most important of these growth-regulating hormones.

Scientists had previously established that plants respond differently to ethylene depending upon the type of plant tissue it is applied to, the developmental stage of the plant, and the surrounding environmental conditions. They also knew that the presence of auxin, another key growth-regulator, often served as a trigger for a plant to produce more ethylene, but were unsure of the ways in which auxin was synthesized.

Auxin controls almost every process in a plant, Alonso says, and so its very important to understand how and why auxin is produced within the plant.

In order to find out more about how auxin production is triggered, the NC State team identified a mutant strain of Arabidopsis or mustard weed that had a root system insensitive to the growth inhibitory effect of ethylene.

When the team looked at the genome of this mutant strain of mustard weed, they discovered that its lack of response to ethylene was due to the changes in a gene that they named TAA1. This gene produces a protein that is necessary for auxin synthesis. In a normal plant, the TAA1 gene recognizes the presence of ethylene as its signal to make proteins that in turn synthesize auxin, which controls growth.

The researchers found that if the TAA1 gene and two other related genes were knocked out or inactive, the plant had 50 percent less auxin than normal.

Their findings are the first to definitively establish a relationship between a particular family of genes, tissue-specific ethylene response, and auxin production in plants.

If we want to do intelligent manipulation of plants, to breed them so that they ripen at a certain rate, or so that theyre well-adapted to particular environments, then we need to understand more about the ways that these hormones interact or talk to each other, Alonso says. This research gives us concrete evidence for at least one way in which this happens.


'/>"/>

Contact: Tracey Peake
tracey_peake@ncsu.edu
919-515-6142
North Carolina State University
Source:Eurekalert  

Related biology news :

1. Obesity and the central nervous system -- the state of the art
2. University of Minnesota study refutes belief that black men have more aggressive prostate cancer
3. Iowa State University conference examines developing bioeconomy
4. University and state agencies to forecast local health effects of climate change
5. K-State Veterinary Lab routinely tests for bluetongue virus
6. New prostate cancer research findings
7. Iowa State professors genome research published in the latest issue of Science
8. Leading researchers to reveal comprehensive dos and donts for prostate cancer
9. K-State chemistry professor to receive Masao Horiba award
10. K-State sociologists use Department of Energy grant
11. NIH grants $33 M in institutional development awards to 3 states
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NC State researchers identify genes key to hormone production in plants
(Date:12/6/2016)... Biomet Holdings, Inc. (NYSE and SIX: ZBH) (the "Company") today ... principal amount of its 1.414% senior unsecured notes due 2022 ... notes due 2026. The closing of the ... the satisfaction of customary closing conditions.  The notes will pay ... The Company intends to use the net proceeds from the ...
(Date:12/2/2016)... , Dec. 1, 2016   SoftServe ... announced BioLock , an electrocardiogram (ECG) biosensor ... monitoring, a key IoT asset. The smart system ... a vehicle,s steering wheel and mobile devices to ... touch. As vehicle technology advances, so ...
(Date:11/29/2016)... Nearly one billion matches per second with DERMALOG,s ... ... DERMALOG is Germany's largest Multi-Biometric ... Management. (PRNewsFoto/DERMALOG Identification Systems) ... DERMALOG is Germany's largest Multi-Biometric supplier: The company's Fingerprint Identification System is ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... ... 08, 2016 , ... Lajollacooks4u, San Diego’s premier team building events and cooking ... new program offerings and company expansion. , This is largely due to ... of over 30 people. Ever since, Lajollacooks4u has seen significant demand for its services ...
(Date:12/8/2016)... December 8, 2016 AskLinkerReports.com has published ... titled Global Amyloglucosidase Industry 2016 Market Research Report. From a ... industry chain overview are all covered in the report. This ... investment return analysis of the Amyloglucosidase industry. ... , , ...
(Date:12/8/2016)... MOINES, Iowa , Dec. 8, 2016 Eurofins announces ... US Food and President of Eurofins Scientific Inc. (ESI). ... Division with his proven professional and entrepreneurial experience in leading international ... in the US food testing market to uphold Eurofins, status as ... ...
(Date:12/8/2016)... England , December 8, 2016 ... das Unternehmen für Molekulargenetik, erweitert seine Palette an ... myPanel™ NGS Custom FH Panels, das ein schnelles ... (FH) ermöglicht. Das Panel bietet eine Erkennung von ... Variations (CNV) mit einem einzigen kleinen Panel und ...
Breaking Biology Technology: