Navigation Links
Myelodysplastic syndromes (MDS) linked to abnormal stem cells
Date:7/1/2012

July 2, 2012 -- (Bronx, NY) -- Researchers at Albert Einstein College of Medicine of Yeshiva University have found that abnormal bone marrow stem cells drive the development of myelodysplastic syndromes (MDS), serious blood diseases that are common among the elderly and that can progress to acute leukemia. The findings could lead to targeted therapies against MDS and prevent MDS-related cancers. The study is published today in the online edition of the journal Blood.

"Researchers have suspected that MDS is a 'stem cell disease,' and now we finally have proof," said co-senior author Amit Verma, M.B.B.S., associate professor of medicine and of developmental and molecular biology at Einstein and attending physician in oncology at Montefiore Einstein Center for Cancer Care. "Equally important, we found that even after MDS standard treatment, abnormal stem cells persist in the bone marrow. So, although the patient may be in remission, those stem cells don't die and the disease will inevitably return. Based on our findings, it's clear that we need to wipe out the abnormal stem cells in order to improve cure rates."

MDS are a diverse group of incurable diseases that affect the bone marrow and lead to low numbers of blood cells. While some forms of MDS are mild and easily managed, some 25 to 30 percent of cases develop into an aggressive disease called acute myeloid leukemia. Each year, about 10,000 to 15,000 people in the U.S. are diagnosed with MDS, according to the National Marrow Donor Program.

Most cases of MDS occur in people over age 60, but the disease can affect people of any age and is more common in men than women. Symptoms vary widely, ranging from anemia to infections, fever and bleeding. Treatment usually involves chemotherapy to destroy abnormal blood cells plus supportive care such as blood transfusions.

In the current study, lead author Britta Will, Ph.D., research associate in the department of cell biology, and her colleagues analyzed bone marrow stem cells and progenitor cells (i.e., cells formed by stem cells) from 16 patients with various types of MDS and 17 healthy controls. The stem and progenitor cells were isolated from bone marrow using novel cell-sorting methods developed in the laboratory of co-senior author Ulrich Steidl, M.D., Ph.D., assistant professor of cell biology and of medicine and the Diane and Arthur B. Belfer Faculty Scholar in Cancer Research at Einstein.

Genome-wide analysis revealed widespread genetic and epigenetic alterations in stem and progenitor cells taken from MDS patients, in comparison to cells taken from healthy controls. The abnormalities were more pronounced in patients with types of MDS likely to prove fatal than in patients with lower-risk types.

"Our study offers new hope that MDS can be more effectively treated, with therapies that specifically target genes that are deregulated in early stem and progenitor cells," said Dr. Steidl. "In addition, our findings could help to detect minimal residual disease in patients in remission, allowing for more individualized treatment strategies that permanently eradicate the disease."


'/>"/>

Contact: Kim Newman
sciencenews@einstein.yu.edu
718-430-3101
Albert Einstein College of Medicine
Source:Eurekalert

Related biology news :

1. Low vitamin D levels linked to weight gain in some older women
2. Mild thyroid dysfunction in early pregnancy linked to serious complications
3. Research identifies specific bacteria linked to indoor water-damage and mold
4. Childhood virus infection linked to prolonged seizures with fever
5. University of Leicester study finds low agreeableness linked to a preference for aggressive dogs
6. Air pollution level changes in Beijing linked with biomarkers of cardiovascular disease
7. Researchers discover first gene linked to missing spleen in newborns
8. Knee injuries in women linked to motion, nervous system differences
9. Prenatal exposure to air pollution linked to childhood obesity
10. First mass extinction linked to marine anoxia
11. Ocean acidification linked to larval oyster failure
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... anticipated to expand at a CAGR of 25.76% during ... diseases is the primary factor for the growth of ... report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global ... product, technology, application, and geography. The stem cell market ...
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
(Date:3/27/2017)... , March 27, 2017  Catholic Health Services ... Management Systems Society (HIMSS) Analytics for achieving Stage ... Model sm . In addition, CHS previously earned ... hospitals using an electronic medical record (EMR). ... high level of EMR usage in an outpatient ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... pathology, announced today it will be hosting a Webinar titled, “Pathology is going ... Pathology Associates , on digital pathology adoption best practices and how Proscia improves ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new study ... in frozen and fresh in vitro fertilization (IVF) transfer cycles. The ... IVF success. , After comparing the results from the fresh and frozen transfer ...
(Date:10/10/2017)... ... October 10, 2017 , ... For the second ... a US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to Washington, ... from US2020. , US2020’s mission is to change the trajectory of STEM education ...
(Date:10/10/2017)... , ... October 10, 2017 , ... ... and business process optimization firm for the life sciences and healthcare industries, announces ... conference in San Francisco. , The presentation, “Automating GxP Validation for Agile Cloud ...
Breaking Biology Technology: