Navigation Links
Mutants with heterozygote disadvantage can prevent spread of transgenic animals
Date:11/21/2011

This release is available in German.

Genetically modified animals are designed to contain the spread of pathogens. One prerequisite for the release of such organisms into the environment is that the new gene variant does not spread uncontrollably, suppressing natural populations. Scientists at the Max Planck Institute for Evolutionary Biology in Pln, Germany, have now established that certain mutations are maintained over an extended period if two separate populations exchange individuals with one another on a small scale. The new gene variant may remain confined to one of the two populations. The migration rate between the populations determines how long the new gene variant is expected to survive in the environment. These new findings may help to achieve greater safety when conducting release experiments involving genetically modified animals.

Genetically modified organisms must not be allowed to spread uncontrollably. Scientists are therefore keen to take advantage of a mechanism that will localise the spread of mutants. Mutants with a heterozygote disadvantage, as it is known, reduce the evolutionary fitness of their carriers to varying degrees if they are only available to one gene copy (heterozygote) or exist in both gene copies (homozygote). In their study, the Max Planck scientists assumed a fitness loss of 50 percent (compared to wildtypes) for mutant heterozygotes and a 10 percent fitness loss for mutant homozygotes.

A mutant with a heterozygote disadvantage can be maintained in a population if it occurs frequently enough for sufficient homozygote offspring to be produced. Above this value, it can suppress the non-mutated gene variant completely and the mutated form becomes extinct. Populations containing mutants with heterozygote disadvantage develop into one of two stable states. These mutant types therefore seem to be well-suited for the safe release of genetically modified organisms. After all, as soon as sufficient numbers of mutants exist in the environment, these replace the natural variant in a local population. If such genes are joined to resistance genes to combat pathogens, mosquito populations could be rendered resistant to Malaria, for example. By releasing the wildtype at a later stage, the transgenic animals can therefore also be removed again more easily from the environment. In population genetics this is known as underdominance.

The researchers then analyzed computer-based simulations showing the effect of mutants with heterozygote disadvantage on two populations of equal size, which, as in nature, are subject to statistical fluctuations. In doing so, they paid particular attention to the gene flow arising from the mobility of the individuals. At times, such a mutation can survive in a stable state in a population. However, this only happens if the migration rate is less than 5 percent. "Our calculations have also shown that mutants are best released into both populations even if the goal is to establish the new genetic variant in only one of them in the long term. If, for example, 75 percent of transgenic animals are distributed to the target population and the remaining 25 percent to a neighbouring population, the transgenic individuals may find it easier to gain traction on a long-term basis in the target population," explains Philipp Altrock from the Max Planck Institute for Evolutionary Biology.

Scientists in the USA, Brazil, Malaysia and the Cayman Islands have been conducting field experiments on the use of genetically modified animals for several years. These include, for example, experiments involving genetically modified mosquitoes, to protect against infectious diseases such as malaria or dengue fever, and transgenic plant pests. Similar experiments are planned in another nine countries. To date, the males from various insect species, which are generally infertile, are released. In this way, the effective size of the wild population is limited. "One of the disadvantages of this method is that it needs to be repeated very frequently as the transgenic animals cannot reproduce," says Arne Traulsen from the Max Planck Institute in Pln. In addition, in the case of mosquitoes, a few parent individuals can already have a large share of the next generation.

In contrast, mutants with heterozygote disadvantage can survive for many generations. Resistance genes linked to such mutants would therefore be more efficient. The safety aspect also increases, as proliferation across a target population is very unlikely. "Nevertheless, the fitness of the transgenic animals, the population sizes, and the migration rates must be known. These factors can most likely be determined for release experiments on maritime islands," says Arne Traulsen.


'/>"/>

Contact: Dr. Philipp M. Altrock
altrock@evolbio.mpg.de
49-452-276-3226
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. We are all mutants
2. Mechanism behind demethylation pinpointed in APC gene mutants
3. 200,000 rice mutants available worldwide for scientific investigation
4. 200,000 rice mutants available worldwide for scientific investigation
5. 86 percent of disadvantaged preschoolers lack basic motor skills
6. Disproportionate effects of global warming and pollution on disadvantaged communities
7. Research aims to prevent obesity by reaching parents, young children through child care
8. Scarring a necessary evil to prevent further damage after heart attack
9. Enzyme boosts metabolism, prevents weight gain in mice
10. New approaches may prevent certain side effects in BRAF mutation-positive melanoma
11. Rutgers neuroscientist says protein could prevent secondary damage after stroke
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Mutants with heterozygote disadvantage can prevent spread of transgenic animals
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting ... are setting a new clinical standard in telehealth thanks ... By leveraging the higi platform, IMPOWER patients can routinely ... pulse and body mass index, and, when they opt ... and convenient visit to a local retail location at ...
(Date:3/29/2016)... 2016 LegacyXChange, Inc. (OTC: ... SelectaDNA/CSI Protect are pleased to announce our successful effort ... variety of writing instruments, ensuring athletes signatures against counterfeiting ... from athletes on LegacyXChange will be assured of ongoing ... Bill Bollander , CEO states, "By ...
(Date:3/22/2016)... and SANDY, Utah , March ... operates the highest sample volume laboratory in ... and UNIConnect, leaders in clinical sequencing informatics and molecular ... of a project to establish the informatics infrastructure for ... NSO has been contracted by the Ontario Ministry ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , ... June 23, 2016 , ... ... release of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering ... retention in this eBook by providing practical tips, tools, and strategies for clinical ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... YM (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. ... microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory and ...
(Date:6/23/2016)... 23, 2016   EpiBiome , a precision microbiome ... in debt financing from Silicon Valley Bank (SVB). The ... to advance its drug development efforts, as well as ... "SVB has been an incredible strategic partner to ... traditional bank would provide," said Dr. Aeron Tynes ...
Breaking Biology Technology: