Navigation Links
Music is the engine of new U-M lab-on-a-chip device
Date:7/22/2009

ANN ARBOR, Mich.---Music, rather than electromechanical valves, can drive experimental samples through a lab-on-a-chip in a new system developed at the University of Michigan. This development could significantly simplify the process of conducting experiments in microfluidic devices.

A paper on the research will be published online in the Proceedings of the National Academy of Sciences the week of July 20.

A lab-on-a-chip, or microfluidic device, integrates multiple laboratory functions onto one chip just millimeters or centimeters in size. The devices allow researchers to experiment on tiny sample sizes, and also to simultaneously perform multiple experiments on the same material. There is hope that they could lead to instant home tests for illnesses, food contaminants and toxic gases, among other advances.

To do an experiment in a microfluidic device today, researchers often use dozens of air hoses, valves and electrical connections between the chip and a computer to move, mix and split pin-prick drops of fluid in the device's microscopic channels and divots.

"You quickly lose the advantage of a small microfluidic system," said Mark Burns, professor and chair of the Department of Chemical Engineering and a professor in the Department of Biomedical Engineering.

"You'd really like to see something the size of an iPhone that you could sneeze onto and it would tell you if you have the flu. What hasn't been developed for such a small system is the pneumatics---the mechanisms for moving chemicals and samples around on the device."

The U-M researchers use sound waves to drive a unique pneumatic system that does not require electromechanical valves. Instead, musical notes produce the air pressure to control droplets in the device. The U-M system requires only one "off-chip" connection.

"This system is a lot like fiberoptics, or cable television. Nobody's dragging 200 separate wires all over your house to power all those channels," Burns said. "There's one cable signal that gets decoded."

The system developed by Burns, chemical engineering doctoral student Sean Langelier, and their collaborators replaces these air hoses, valves and electrical connections with what are called resonance cavities. The resonance cavities are tubes of specific lengths that amplify particular musical notes.

These cavities are connected on one end to channels in the microfluidic device, and on the other end to a speaker, which is connected to a computer. The computer generates the notes, or chords. The resonance cavities amplify those notes and the sound waves push air through a hole in the resonance cavity to their assigned channel. The air then nudges the droplets in the microfluidic device along.

"Each resonance cavity on the device is designed to amplify a specific tone and turn it into a useful pressure," Langelier said. "If I play one note, one droplet moves. If I play a three-note chord, three move, and so on. And because the cavities don't communicate with each other, I can vary the strength of the individual notes within the chords to move a given drop faster or slower."

Burns describes the set-up as the reverse of a bell choir. Rather than ringing a bell to create sound waves in the air, which are heard as music, this system uses music to create sound waves in the device, which in turn, move the experimental droplets.

"I think this is a very clever system," Burns said. "It's a way to make the connections between the microfluidic world and the real world much simpler."

The new system is still external to the chip, but the researchers are working to make it smaller and incorporate it on a microfluidic device. That would be a step closer to a smartphone-sized home flu test.


'/>"/>

Contact: Nicole Casal Moore
ncmoore@umich.edu
734-647-1838
University of Michigan
Source:Eurekalert

Related biology news :

1. The neurobiology of musicality related to the intrinsic attachment behavior?
2. Some vocal-mimicking animals, particularly parrots, can move to a musical beat
3. Brain music
4. Musicians have biological advantage in identifying emotion in sound
5. American Library Association names NJIT prof’s Whale Music book a top ten
6. Research shows that time invested in practicing pays off for young musicians
7. Genetically engineered mice yield clues to knocking out cancer
8. Kelvin Lee winner of Biochemical Engineering Journal Young Investigator Award
9. Engineering innovative solutions for 21st century medicine
10. Engineered pig stem cells bridge the mouse-human gap
11. Researchers engineer metabolic pathway in mice to prevent diet-induced obesity
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/18/2017)... MINNETONKA, Minn. , Jan. 18, 2017 /PRNewswire/ ... eClinical technology company that supports the entire spectrum ... 2016 has been another record-breaking year for the ... and market interest in MedNet,s eClinical products and ... to the tremendous marketplace success of ...
(Date:1/12/2017)... 2017  Trovagene, Inc. (NASDAQ: TROV ), ... announced that it has signed agreements with seven strategic ... Middle East for commercialization of ... first wave of international distribution agreements for Trovagene,s CLIA ... The initial partners will introduce Trovagene,s liquid ...
(Date:1/12/2017)... Oregon and PUNE, India , January 12, 2017 /PRNewswire/ ... Market: Opportunities and Forecasts, 2015 - 2022," projects that the global biometric technology market ... of 19.4% from 2016 to 2022. Continue Reading ... ... ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... /PRNewswire -- WuXi AppTec, a leading global pharmaceutical, ... platform, today announced that it has acquired HD ... discovery contract research organization (CRO). After completion of ... of WuXi, and will continue to focus on ... The acquisition will further strengthen WuXi,s R&D capability ...
(Date:1/19/2017)... CALABASAS, Calif. , Jan. 19, 2017 /PRNewswire/ ... Mathias Schmidt , Ph.D., as chief executive ... board of directors. Dr. Schmidt brings to ArmaGen more ... on the research and development of biotherapeutics and ... biopharmaceutical executive with the diverse experience and skillset ...
(Date:1/19/2017)... , ... January 19, 2017 , ... ... with services spanning the full spectrum of drug and device development, and ... to pharma/device companies and clinicians, today announced Verified Clinical Trials (VCT) ...
(Date:1/18/2017)... ... January 18, 2017 , ... Opal ... using USB or PCI Express, announced the ZEM5310 USB 3.0 FPGA Module, combining ... a compact business-card sized form factor suitable for prototyping, testing, and production-ready integration. ...
Breaking Biology Technology: