Navigation Links
Muscle filaments make mechanical strain visible
Date:12/20/2010

Plastics-based materials have been in use for decades. But manufacturers are facing a serious hurdle in their quest for new developments: Substantial influences of the microscopic material structure on mechanical material properties cannot be observed directly. The synthetic polymer molecules are simply too small for microscopic observation in mechanical experiments. A team of physicists led by professor Andreas Bausch of the Technische Universitaet Muenchen (TUM) has now developed a method that allows just these kinds of measurements. They present their results in Nature Communications.

When polyethylene film is strongly stretched, it becomes more tear-resistant. This makes shopping bags significantly more resilient. The effect is ascribed to a reorganization of polymer chains. Some elastic polymers get softer with frequently recurring stress. This phenomenon was named the Mullins effect after its discoverer. However, what exactly the polymer chains do when subjected to mechanical stress has so far not been sufficiently understood. One reason for this is that synthetic polymers are too small to be observed using microscopy methods during mechanical stress experiments. An improved understanding of the processes on a molecular level would save a lot of time and money in the development of new plastics.

Nature, too, takes advantage of the mechanical properties of polymers: Biological polymers give cells their stability and play a decisive role when they carry out their complex functions. Professor Andreas Bausch and his team used the muscle filament protein actin to build a new polymer network. The actin filaments are visible under a fluorescence microscope. This allowed the scientists to directly observe the movements of the individual filaments when mechanical stress was applied to the material.

By simultaneously using a rheometer, which is used to study the mechanical properties of materials, and a confocal microscope, the scientists were able to study the behavior of the actin network during mechanical deformation and to film it in three dimensions.

In their studies, published in the online journal Nature Communications, the scientists successfully demonstrated that their model system sheds light not only on the molecular-level processes behind the Mullins effect, but also the opposite effect, which renders material tougher as a result of repeated stress.

The cause for the change in mechanical properties is extensive reorganization in the network structure, which was now observed directly for the first time. In the future, this model will help physicists to better understand changes in the properties of other materials, too.


'/>"/>

Contact: Patrick Regan
regan@zv.tum.de
49-892-891-0515
Technische Universitaet Muenchen
Source:Eurekalert  

Related biology news :

1. Light workout: Stanford scientists use optogenetics to effectively stimulate muscle movement in mice
2. Muscle wasting in cancer does not spare the heart
3. Structural defects precede functional decline in heart muscle
4. From the heart: How cells divide to form different but related muscle groups
5. Inspiratory muscle training and endurance sport performance
6. Muscle loss in elderly linked to blood vessels failure to dilate
7. Muscle mass in elderly boosted by combining resistance exercise and blood flow restriction
8. Caught on tape: Muscle stem cells captured on video by MU researcher
9. UBC researchers design new biomaterial that mimics muscle elasticity
10. University of Nevada School of Medicine physiology professor earns $1.2 million grant over four years to study motility of internal anal sphincter muscle
11. U-M researchers solve a molecular mystery in muscle
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Muscle filaments make mechanical strain visible
(Date:2/21/2017)... 2017 Der weltweite Biobanking-Sektor wird ... einem Gespräch mit mehr als 50 Vertretern aus verschiedenen Branchen ... gilt, um diese Prognose zu realisieren. ... Zu den ... finanziellen Mittel für die Biobank, die Implementierung Zeit sparender ...
(Date:2/14/2017)... N.C. , Feb. 14, 2017  Wake Forest ... M.D., as its new chief executive officer (CEO). Freischlag ... CEO John D. McConnell , M.D., who last ... position at the Medical Center, after leading it since ... the full scope of Wake Forest Baptist,s academic health ...
(Date:2/13/2017)... WASHINGTON , Feb. 13, 2017 Former ... U.S. Senate Judiciary Committee, Janice Kephart of ... regarding President Donald Trump,s "Executive Order: Protecting ... States" (Jan. 27, 2017):  "As President Trump,s ... 9th Circuit has now essentially banned the travel ban, ...
Breaking Biology News(10 mins):
(Date:3/27/2017)... ... March 27, 2017 , ... IsoPlexis Corporation (IsoPlexis), a ... disease and more through a single-cell precision engineering platform, today announced it has ... in the laboratory of Dr. James Heath at the California Institute of ...
(Date:3/27/2017)... ... March 27, 2017 , ... Biopsies from non-small cell ... with limited tumor content in a large background of normal or wild type ... need for reliable detection of low abundance somatic mutations, particularly in small specimens ...
(Date:3/27/2017)... Md. , March 27, 2017  The ... billion for 2016, according to a new report ... medical lab testing is performed to evaluate disease ... individual therapy, among other reasons.  The healthcare market ... Market , provides an overview of the ...
(Date:3/27/2017)... The new research portal will give visitors quick ... Valero Energy , offering extensive market research on their ... ... The latest trend gaining momentum in ... even though touted as a green alternative to fossil fuels, ...
Breaking Biology Technology: