Navigation Links
Moving gene therapy forward with mobile DNA
Date:5/3/2009

Gene therapy

Gene therapy is the introduction of genetic material into a patient's cells resulting in a cure or a therapeutic effect. In recent years, it has been shown that gene therapy is a promising technology to treat or even cure several fatal diseases for which there is no attractive alternative therapy. Gene therapy can be used for hereditary diseases, but also for other diseases that affect heart, brain and even for cancer. Indeed, recent results suggest that gene therapy can be beneficial for patients suffering from aggressive brain cancer that would otherwise be lethal.

A safe delivery of the genes?

Despite the overall progress, there is still a need to develop improved and safer approaches to deliver genes into cells. The success of gene therapy ultimately depends on these gene delivery vehicles or vectors. Most vectors have been derived from virusses that can be tailor-made to deliver therapeutic genes into the patients' cells. However, some of these viral vectors can induce side-effects, including cancer and inflammation.

Marinee Chuah, Thierry VandenDriessche, Eyayu Belay and their fellow VIB researchers at K.U. Leuven in collaboration with Zsuzsanna Iszvak and Zoltan Ivics and colleagues at the Max Delbrck Center in Berlin (Germany) have now developed a new non-viral approach that overcomes some of the limitations associated with viral vectors.

Lessons from evolution

Using the principles of evolution and natural selection, that were initially conceived by Charles Darwin, they have now developped an efficient and safe gene delivery approach based on non-viral genetic elements, called transposons. Transposons are mobile DNA elements that can integrate into 'foreign' DNA via a 'cut-and-paste' mechanism. In a way they are natural gene delivery vehicles. The researchers constructed the transposons in such a way that they can carry the therapeutic gene into the target cell DNA. Doing so, they obviate the need to rely on viral vectors.

'We show for the first time that it is now possible to efficiently deliver genes into stem cells, particularly those of the immune system, using non-viral gene delivery', says Marinee Chuah. 'Many groups have tried this for many years but without success. We are glad that we could now overcome this hurdle' claims Thierry VandenDriessche. Zsuzsanna Izsvak and Zoltan Ivics concur: 'This transposon technology may greatly simplify the way gene therapy is conducted, improve its overall safety and reduce the costs'.

The VIB researchers are further testing this technology to treat specific diseases including cancer and genetic disorders, in anticipation of moving forward and treat patients suffering from these diseases.


'/>"/>

Contact: Sooike Stoops
sooike.stoops@vib.be
329-244-6611
VIB (the Flanders Institute for Biotechnology)
Source:Eurekalert

Related biology news :

1. ORNL study finds rivers play part in removing nitrogen
2. Iron-moving malfunction may underlie neurodegenerative diseases, aging
3. Scientists present moving theory behind bacterial decision-making
4. Moving new technologies from the lab to the marketplace
5. Moving in for the winter toxic brown recluse spiders pose danger
6. A new radiation therapy treatment developed for head and neck cancer patients
7. St. Jude finds factors that accelerate resistance to targeted therapy in lymphoblastic leukemia
8. UC health news: molecular pathway may predict chemotherapy effectiveness
9. MIT works toward safer gene therapy
10. Intravenous gene therapy protects normal tissue of mice during whole-body radiation
11. Gene, stem cell therapy only needs to be 50 percent effective to create a healthy heart
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... GOTHENBURG, Sweden , April 28, 2016 ... 1,491.2 M (139.9), up 966% compared with the first quarter of ... Operating profit totaled SEK 589.1 M (loss: 18.8) and the operating ... SEK 7.12 (loss: 0.32) Cash flow from operations was ... , The 2016 revenue guidance is unchanged, SEK 7,000-8,500 M. ...
(Date:4/19/2016)... The new GEZE SecuLogic access ... "all-in-one" system solution for all door components. It can ... door interface with integration authorization management system, and thus ... minimal dimensions of the access control and the optimum ... offer considerable freedom of design with regard to the ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
(Date:6/23/2016)... Mass. , June 23, 2016   ... development of novel compounds designed to target cancer ... napabucasin, has been granted Orphan Drug Designation from ... the treatment of gastric cancer, including gastroesophageal junction ... stemness inhibitor designed to inhibit cancer stemness pathways ...
(Date:6/23/2016)... Cancer Foundation (PCF) is pleased to announce 24 new Young Investigator (YI) ... of the Class of 2016 were selected from a pool of 128 applicants ... the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... Durham, NC (PRWEB) , ... June 23, 2016 , ... ... Odense University Hospital in Denmark detail how a patient who developed lymphedema after being ... (fat) tissue. The results could change the paradigm for dealing with this debilitating, frequent ...
Breaking Biology Technology: