Navigation Links
Movement disorder symptoms are lessened by an antibiotic

TUSCALOOSA, Ala. Discovery of an antibiotic's capacity to improve cell function in laboratory tests is providing movement disorder researchers with leads to more desirable molecules with potentially similar traits, according to University of Alabama scientists co-authoring a paper publishing March 10 in the journal Disease Models & Mechanisms.

"It's our hope that this discovery serves as the impetus for a proper clinical trial to evaluate the potential of drugs like ampicillin for early-onset torsion dystonia," said Dr. Guy Caldwell, associate professor of biological sciences at The University of Alabama. Dystonia is, like Parkinson's disease, a movement disorder. Combined, this class of diseases affects millions worldwide. People with early-onset dystonia have one good copy of the gene DYT1, and one problematic copy, in their DNA. These genes contain the information to make a protein called torsinA.

"When proteins go bad, they often cause disease, but they always have a normal function in our cells," Guy Caldwell said. "We looked to find molecules not necessarily that reversed the mutated form of the protein but instead enhanced the normal activity of the protein, thereby overcoming the deficiency caused by the mutant."

The UA researchers discovered that ampicillin, a common antibiotic of the penicillin group, serves to activate torsinA, which, in its normal form, appears to protect cells from stresses, such as protein misfolding a problem known to impact various movement disorders.

Using a nematode animal model designed to evaluate torsinA activity, the UA lab rapidly screened through hundreds of compounds to identify those that were most effective at enhancing torsinA's normally protective function.

"From there, we collaborated with researchers at Harvard and UAB to validate our findings in human patient cells and mice," said Dr. Kim Caldwell, associate professor of biological sciences at UA.

"In human dystonia patient cells, ampicillin was efficacious and restored the patient cells back to the normal function," Kim Caldwell said. "And, the drug restored normal movement to mice that were genetic mimics of dystonia."

Collaborators in the UA-led study were Drs. Xandra O. Breakefield and her colleagues at Harvard and Yuqing Li and his colleagues at The University of Alabama at Birmingham, known as UAB. Dr. Songsong Cao, a former doctoral student in the Caldwell Lab, is the study's lead author; two UA doctoral students, Alexander J. Burdette and Pan Chen; and one former UA student, Amber Clark Buckley, are among the co-authors.

Furthermore, the research shows ampicillin enhances the capacity of torsinA to protect, within animal models, the neurons which produce dopamine from dying. The death of these neurons in human brains leads to the hallmark symptoms of Parkinson's disease.

In a statement accompanying the paper, the researchers caution against the long-term use of an antibiotic in disease treatment.

"We have taken ampicillin and used that as a base structure to find things that work like ampicillin but which aren't ampicillin," Guy Caldwell said. "Finding molecules that are not antibiotic and still have the capacity to activate torsinA has been an ongoing effort of our lab, and we have some exciting leads in that direction."

UA filed patents covering the use of antibiotics and other novel chemicals as activators of torsinA for treatment of dystonia and other diseases, including Parkinson's disease. The University has also entered into a collaborative research and licensing agreement with QRxPharma, a clinical stage pharmaceutical company, to identify, develop and commercially exploit new torsinA activator drugs.

The UA/QRxPharma research program is directed at re-engineering existing drug therapies for new clinical applications and identifying new drug candidates for uses including the treatment of dystonia, Parkinson's disease and other neurological disorders.

The project exemplifies, the researchers said, how disease model systems can be used to accelerate the development of gene and drug discovery and bring pharmaceuticals more quickly to the clinical trial stage.

Bringing a drug that does not already have FDA approval from the research and development stage to a patient takes an estimated 12 years and $800 million dollars, said Kim Caldwell. By evaluating the potential of molecules already pre-screened for toxicity and that have FDA approval provides a potentially quicker route to clinical trials.

"What we were hoping to do was circumvent a lot of the cost in bringing pharmaceutical help to dystonia patients," Kim Caldwell said.


Contact: Kristy Kain
The Company of Biologists

Related biology news :

1. Hidden habits and movements of insect pests revealed by DNA barcoding
2. An electrifying discovery: New material to harvest electricity from body movements
3. Blocking cell movement for cancer, MS treatment
4. Research finds water movements can shape fish evolution
5. Step forward for nanotechnology: Controlled movement of molecules
6. NOAA scientists map fish habitat and movements at Grays Reef Marine Sanctuary
7. Abnormal brain circuits may prevent movement disorder
8. Protein regulates movement of mitochondria in brain cells
9. Resilin springs simplify the control of crustacean limb movements
10. Effects of maternal exercise on fetal breathing movements
11. Effects of maternal exercise on fetal breathing movements
Post Your Comments:
(Date:11/17/2015)... , November 17, 2015 Paris ... 2015.   --> Paris from 17 ... DERMALOG, the biometrics innovation leader, has invented the first ... fingerprints on the same scanning surface. Until now two different ... Now one scanner can capture both on the same ...
(Date:11/17/2015)... , Nov. 17, 2015  Vigilant Solutions announces today ... its Board of Directors. --> ... recently retiring from the partnership at TPG Capital, one ... with over $140 Billion in revenue.  He founded and ... all the TPG companies, from 1997 to 2013.  In ...
(Date:11/16/2015)... 16, 2015  Synaptics Inc. (NASDAQ: SYNA ... today announced expansion of its TDDI product portfolio ... controller and display driver integration (TDDI) solutions designed ... new TDDI products add to the previously-announced ... (WQHD resolution), and TD4322 (FHD resolution) solutions. All ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... -- Cepheid (Nasdaq: CPHD ) today announced that, ... Healthcare Conference in New York City ... outlook for the fourth quarter of 2015 and initiating ... term business model expectations. John Bishop , ... be the fastest growing company of the major market ...
(Date:11/30/2015)... ... November 30, 2015 , ... Global ... practitioners and aesthetics professionals from Central America and abroad for the first Iberoamerican ... City, Panama Feb. 17-19, 2016. Testart will present and discuss new trends in ...
(Date:11/30/2015)... (NYSE: BIOA ), a leader in renewable materials, today ... Climate Pledge, alongside more than 140 companies from across the ... demonstrate an ongoing commitment to climate action and to voice ... Paris climate negotiations. Sarnia, Canada ... --> BioAmber uses biotechnology to convert renewable sugars ...
(Date:11/30/2015)... Nov. 30, 2015 Spherix Incorporated (Nasdaq: ... to the fostering and monetization of intellectual property, ... prospective initiatives designed to create shareholder value. ... of Spherix. "Based on published reports, the total ... $50 billion and Spherix will seek to secure ...
Breaking Biology Technology: