Navigation Links
Mount Sinai scientists and international team shed new light on schizophrenia
Date:7/22/2014

NEW YORK, NY -- As part of a multinational, collaborative effort, researchers from the Icahn School of Medicine at Mount Sinai have helped identify over 100 locations in the human genome associated with the risk of developing schizophrenia, in the largest genomic study published on any psychiatric disorder to date, conducted with 80,000 people. The findings, published online in Nature, point to biological mechanisms and pathways that may underlie schizophrenia, and could lead to new approaches to treating the disorder, which has seen little innovation in drug development in more than 60 years.

Schizophrenia, a debilitating psychiatric disorder that affects approximately 1 out of every 100 people worldwide, is characterized by hallucinations, paranoia, and a breakdown of thought processes, and often emerges in the teens and early 20s. Its lifetime impact on individuals and society is high, both in terms of years of healthy life lost to disability and in terms of financial cost, with studies estimating the cost of schizophrenia at over $60 billion annually in the U.S. alone.

"By studying the genome, we are getting a better handle on the genetic variations that are making people vulnerable to psychiatric disease," said Tom Insel, director of the National Institute of Mental Health, which helped fund the study. "Through the wonders of genomic technology, we are in a period in which, for the first time, we are beginning to understand many of the players at the molecular and cellular level."

In the genome-wide association study (GWAS) published in Nature, the authors looked at over 80,000 genetic samples from schizophrenia patients and healthy volunteers and found 108 specific locations in the human genome associated with risk for schizophrenia. Eighty-three of those loci had not previously been linked to the disorder.

"Through its open and extensive worldwide data sharing policies, The Psychiatric Genomics Consortium (PGC), which led this work, is having a major impact on our understanding of schizophrenia. Without these efforts it would have been impossible to gather and analyze DNA data from enough people with and without schizophrenia," said Pamela Sklar, MD, PhD, co-author of the study, Chief of the Division of Psychiatric Genomics and Professor of Psychiatry at the Icahn School of Medicine at Mount Sinai.

The study implicates genes expressed in brain tissue, particularly those related to neuronal and synaptic function. These include genes that are active in pathways controlling synaptic plasticity a function essential to learning and memory and pathways governing postsynaptic activity, such as voltage-gated calcium channels, which are involved in signaling between cells in the brain. These newly identified loci may point to additional therapeutic targets. "The fact that we were able to detect genetic risk factors on this massive scale shows that schizophrenia can be tackled by the same approaches that have already transformed our understanding of other diseases," said paper co-author Michael O'Donovan, deputy director of the MRC Centre for Neuropsychiatric Genetics and Genomics at Cardiff University School of Medicine. 'The wealth of new findings have the potential to kick-start the development of new treatments in schizophrenia, a process which has stalled for the last 60 years."

The study is the result of several years of work by the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC, http://pgc.unc.edu), an international, multi-institutional collaboration founded in 2007 to conduct broad-scale analyses of genetic data for psychiatric disease. The current paper used 55 datasets from more than 40 different contributors to conduct the analysis. The DNA data from the 80,000 people used in this study represent all the data that the consortium has amassed to date. The PGC is currently genotyping over 100,000 additional people to further study schizophrenia and other psychiatric diseases, including autism and bipolar disorder.
'/>"/>

Contact: Glenn Farrell
glenn.farrell@mssm.edu
650-690-1598
The Mount Sinai Hospital / Mount Sinai School of Medicine
Source:Eurekalert

Related biology news :

1. Mining mountains of data for medical insights
2. Mountain ecosystems scientists to convene at University of Nevada, Reno
3. How does snow affect the amount of water in rivers?
4. Earth Week: Bark beetles change Rocky Mountain stream flows, affect water quality
5. Researchers find arid areas absorb unexpected amounts of atmospheric carbon
6. Scientists say new computer model amounts to a lot more than a hill of beans
7. Rocky Mountain wildflower season lengthens by more than a month
8. Genetics linked to children viewing high amounts of violent media
9. Arctic inland waters emit large amounts of carbon
10. Large amounts of folic acid shown to promote growth of breast cancer in rats
11. Study of Nepalese pilgrims challenges diagnosis of acute mountain sickness
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/3/2016)... 3, 2016 Das ... Nepal hat ein 44 ... geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, ... Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte ... Januar teilgenommen, aber Decatur wurde als konformste ...
(Date:5/24/2016)... superior patient care by providing unparalleled technology to leaders of the medical imaging industry. ... recently added to the range of products distributed by Ampronix. Photo - ... ... ... ...
(Date:5/3/2016)... 2016  Neurotechnology, a provider of high-precision biometric ... Biometric Identification System (ABIS) , a complete system ... ABIS can process multiple complex biometric transactions with ... fingerprint, face or iris biometrics. It leverages the ... MegaMatcher Accelerator , which have been used ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... 2016 , ... Parallel 6 , the leading software as a service ... Virtual Patient Encounter CONSULT module which enables both audio and video telemedicine communication ... , Using the CONSULT module, patients and physicians can schedule a face to face ...
(Date:6/27/2016)... PHILADELPHIA , June 27, 2016  Liquid ... today announced the funding of a Sponsored Research ... study circulating tumor cells (CTCs) from cancer patients.  ... changes in CTC levels correlate with clinical outcomes ... therapies. These data will then be employed to ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader in clinical ... Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio revisits ... tips, tools, and strategies for clinical researchers. , “The landscape of how patients ...
Breaking Biology Technology: