Navigation Links
Mount Sinai researchers develop first successful laboratory model for studying hepatitis C
Date:8/2/2013

By differentiating monkey stem cells into liver cells and inducing successful infection, researchers from the Icahn School of Medicine at Mount Sinai have shown for the first time that the hepatitis C virus (HCV) can replicate in monkeys, according to research published in the journal Gastroenterology. The new findings may lead to the first new animal model and provide new avenues for developing treatments and vaccines for this disease, which impacts more than three million people in the United States.

Scientists have tried for decades to develop animal models to study HCV, but the virus was incapable of infecting any species except for humans and chimpanzees. With a recent National Institutes of Health-imposed moratorium restricting chimpanzee research, the Mount Sinai research team turned to a close relative of chimpanzees and humansmacaques. Led by Matthew Evans, PhD, and Valerie Gouon-Evans, PhD, of Mount Sinai, the research team sought to find out why previous attempts to infect macaques with HCV failed.

Dr. Gouon-Evans, who is Assistant Professor of in the Department of Developmental and Regenerative Biology at Mount Sinai, worked with a team at the Fred Hutchison Cancer Research Center in Seattle to differentiate macaque stem cells into liver cells. Dr. Evans, who is an Assistant Professor in the Department of Microbiology, and his team then attempted to infect these cells with HCV in a petri dish. They found that these differentiated cells were able to support HCV infection and replication, although not as effectively as in human liver cells.

"Now that we know that HCV infection in macaque cells is possible, we wanted to find out why it only worked in liver cells that were derived from stem cells," said Dr. Gouon-Evans. "By identifying where in the viral life cycle the infection is dysfunctional, we can develop an effective animal model of HCV."

Dr. Evans and his team found that HCV was less efficient at entering macaque cells to initiate infection compared to human cells because changes in the macaque form of a certain cell surface receptor rendered it less functional than the human version. This cell entry block could be overcome by expressing the human version of this receptor in macaque cells. Furthermore, HCV infection of normal macaque cells was greatly enhanced by changes to the virus that loosened its requirements for that receptor.

"Our discovery shows that by manipulating either host or viral genetics we can efficiently infect macaque cells," said Dr. Evans. "These findings may open doors for the field of HCV research, lead to new animal models, and hopefully vaccines and therapies."

Next, Dr. Evans plans to take these experiments out of petri dishes by attempting to infect macaques in vivo with the mutant HCV that can use the receptors this animal naturally expresses. If successful, this work would provide a new, much-needed animal model for HCV studies and vaccine development.


'/>"/>

Contact: Mount Sinai Press Office
newsmedia@mssm.edu
212-241-9200
The Mount Sinai Hospital / Mount Sinai School of Medicine
Source:Eurekalert

Related biology news :

1. AMP concerned about the structure and application of gap fill payment amounts
2. Total amount of exercise important, not frequency, research shows
3. Earthquake swarms; marine Ediacaran fossil traces; Alca obsidian; Mammoth Mountain
4. Mount Sinai celebrates team science at second-annual SINAInnovations Conference Nov. 18-19, 2013
5. Mount Sinai discovers new liver cell for cellular therapy to aid in liver regeneration
6. Going green: Nation equipped to grow serious amounts of pond scum for fuel
7. Intermountain Medical Center reseachers develop new 3-D technology to treat atrial fibrillation
8. Mount Sinai Selects Exemplar LIMS for Genomics Core Facility
9. The right amount of vitamin D for babies
10. Mount Sinai study identifies new gene variations associated with heart rate
11. Mount Sinai leads global program using stem cells to accelerate cures for Alzheimers disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/20/2016)... -- Securus Technologies, a leading provider of civil ... investigation, corrections and monitoring announced that after exhaustive ... the final acceptance by all three (3) Department ... (MAS) installed. Furthermore, Securus will have contracts for ... October, 2016. MAS distinguishes between legitimate wireless device ...
(Date:6/9/2016)... in attendance control systems is proud to announce the introduction of fingerprint attendance control ... right employees are actually signing in, and to even control the opening of doors. ... ... ... Photo - ...
(Date:6/3/2016)... , June 3, 2016 ... Management) von Nepal ... und Lieferung hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, ... führend in der Produktion und Implementierung von ... der Ausschreibung im Januar teilgenommen, aber Decatur ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, ... microbial test has received AOAC Research Institute approval 061601. , “This is another ... year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel ...
(Date:6/23/2016)... YORK , June, 23, 2016  The Biodesign ... to envision new ways to harness living systems and ... Modern Art (MoMA) in New York City ... than 130 participating students, showcased projects at MoMA,s Celeste ... Paola Antonelli , MoMA,s senior curator of architecture ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, ... of the Supplyframe Design Lab . Located in Pasadena, Calif., the Design ... of how hardware projects are designed, built and brought to market. , The ...
(Date:6/23/2016)... ... 23, 2016 , ... In a new case report published today in STEM ... who developed lymphedema after being treated for breast cancer benefitted from an injection of ... dealing with this debilitating, frequent side effect of cancer treatment. , Lymphedema ...
Breaking Biology Technology: