Navigation Links
Motion and muscles don't always work in lockstep, researchers find in surprising new study
Date:3/14/2014

RIVERSIDE, Calif. Animals "do the locomotion" every day, whether it's walking down the hall to get some coffee or darting up a tree to avoid a predator. And until now, scientists believed the inner workings of movement were pretty much the same the nerves send a message to the muscles and there is motion.

But in a first-of-its-kind study on wild green anole lizards, biologists at the University of California, Riverside have discovered that the link between muscle function and movement is a lot more complicated than anyone realized.

"We were trying to understand how animals move in trees; how muscle, in general, deals with something as complex as climbing a tree, with its horizontal and vertical inclines, the tiny little branches and the upright trunks," said Kathleen Foster, a Ph.D. student in Evolution, Ecology and Organismal Biology, who performed the study. "We were expecting to find that as the movements were changing, the muscles would be generating those changes; we'd just show that and move on. Instead, we saw there isn't always this tight relationship between activity in the muscles and the movement we're seeing. Now we have new questions about how animals work."

"No one has ever looked at this before," said Timothy Higham, an assistant professor of biology and Foster's graduate adviser. "A lot of people study anoles and a lot of people remove muscles and study them in a lab, as opposed to measuring the muscles in the animal as it's moving. Our work brings the lab into the forest, and it can help us answer questions about how these animals are doing what they're doing and why they're so diverse."

Foster and Higham's findings were published March 12 in the British biology journal, Proceedings of the Royal Society B, a journal from the same publisher that featured papers by Isaac Newton and Charles Darwin.

In their study, "Context-dependent changes in motor control and kinematics during locomotion: modulation and decoupling," Foster surgically inserted electrodes into the forelimbs and hind limbs of seven male green anole lizards. She then tracked the lizard movements on a flat and 90-degree incline and a broad and narrow perch, using high-speed video to record movements and electromyography to monitor electrical activity in the muscles.

"We expected to see a one-to-one correlation between the muscle activity and movements because motion is generally driven by muscles," Higham said, "but as we changed the structure of their habitat and they changed their motions, we were surprised to find very few accompanying changes in muscle activity."

For instance, the researchers found that while the lizard movements changed considerably when they were running along narrow perches (compared to broad perches), there were few significant changes in muscle activity. And when the lizards were running up an incline, they noted more changes in muscle activity than movement.

"This generally means we can't understand what the muscles are doing just by what we see," Higham said. "We also found that variability in muscle activity differed between the treatments, raising another question: Does variability in muscle activity reflect a preferred way of moving or just reflect what they've always done? This has unearthed a lot of questions about ecology, evolution, how parts of animals evolve and how they respond to their environment."

Though these 2-inch-long green anoles weigh just 5 grams about the same as a U.S. nickel their muscles work the same way as every other vertebrate.

"This means what we learn from studying their muscle function could well apply to a variety of fields," Foster said.

The study's findings also raise new questions in ecomorphology how habitat and environment affect an organism's anatomy. The study found that muscle activity in the green anoles was most consistent on broad, vertical surfaces, such as tree trunks, "suggesting that, despite being classified as a trunk-crown ecomorph, this species may prefer trunks," Foster said.

The study has implications also for people who design artificial limbs or robots.

"Clearly, locomotion is not as simple as we thought it was," Foster said. "This decoupling big changes in movement without corresponding changes in muscle activity suggests there are other important factors going on and we need to better understand them if we want to reproduce these movements in prosthetics or robotics."


'/>"/>

Contact: Iqbal Pittalwala
iqbal@ucr.edu
951-827-6050
University of California - Riverside
Source:Eurekalert  

Related biology news :

1. A study confirms that long commercials evoke stronger emotions
2. Knee injuries in women linked to motion, nervous system differences
3. Lets get moving: Unraveling how locomotion starts
4. Motion sensors detect horse lameness earlier than veterinarians, MU study finds
5. 3-D motion of cold virus offers hope for improved drugs using Australias fastest supercomputer
6. What sets allergies in motion?
7. UMD study shows exercise may protect against future emotional stress
8. Precision motion tracking -- thousands of cells at a time
9. Borderline personality disorder: The "perfect storm" of emotion dysregulation
10. Kirk, Spock together: Putting emotion, logic into computational words
11. Discovery of first motor with revolution motion in a virus-killing bacteria advances nanotechnology
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Motion and muscles don't always work in lockstep, researchers find in surprising new study
(Date:4/17/2017)... MELBOURNE, Florida , April 17, 2017 ... security technology company, announces the filing of its 2016 Annual Report ... Securities and Exchange Commission. ... Report on Form 10-K is available in the Investor Relations section ... well as on the SEC,s website at http://www.sec.gov . ...
(Date:4/13/2017)... PUNE, India , April 13, 2017 According ... Identity Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication ... by MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 ... Annual Growth Rate (CAGR) of 17.3%. ... ...
(Date:4/11/2017)... Research and Markets has announced the addition ... their offering. ... tracking market to grow at a CAGR of 30.37% during the ... 2017-2021, has been prepared based on an in-depth market analysis with ... its growth prospects over the coming years. The report also includes ...
Breaking Biology News(10 mins):
(Date:5/24/2017)... , ... May 24, 2017 , ... ... are increasingly being developed with Wi-Fi connectivity to reduce the amount of wiring ... to room. In addition, compact mobile devices including infusion pumps, heart and hypertension ...
(Date:5/23/2017)... ... 23, 2017 , ... Firmex today announced the ... easy for organizations to send and gather large files and confidential documents beyond ... file size limitations. , Using the same market-tested infrastructure as Firmex’s flagship ...
(Date:5/23/2017)... Ca (PRWEB) , ... May ... ... (PSCs) offer an unlimited source of human cardiovascular cells for research and ... differentiation methods makes it possible to generate large numbers of cardiomyocytes (hPSC-CMs). ...
(Date:5/23/2017)... ... 2017 , ... NetDimensions has been ranked as a Leader ... Corporate Learning, 2017. , Aragon Research defines Leaders as organizations who possess comprehensive ... those strategies. NetDimensions’ ranking as a Leader due to its strengths in: , ...
Breaking Biology Technology: