Navigation Links
Mother's immune system may block fetal treatments for blood diseases
Date:8/16/2009

Pediatric researchers have resolved an apparent contradiction in the field of prenatal cell transplantation a medical approach that holds future promise in correcting sickle cell disease and other serious congenital blood disorders. In a new study in animals, the researchers showed that the mother's immune response interferes with the offspring's earlier ability to tolerate transplanted donor cells.

The study team concludes that focusing on transplant techniques that avoid the maternal immune response may allow scientists to take advantage of fetal tolerance to achieve a long-sought goal of treating blood diseases prenatally.

While cautioning that much work must be done to understand how these animal findings apply to humans, the current findings are "surprising but reassuring," said study leader Alan W. Flake, M.D., of the Children's Center for Clinical Research at The Children's Hospital of Philadelphia.

The study appeared online August 3 in the Journal of Clinical Investigation.

For over 50 years, explained Flake, it has been a fundamental precept of immunology that a fetus tolerates foreign antigens in a window-of-opportunity period before its immune system fully develops the capacity to mount an immune response. Scientists assumed that by carefully introducing donor cells and stimulating a fetus to develop tolerance to those cells, one could set the stage for a later organ or cellular transplant that would not be rejected by a more mature immune system.

As prenatal diagnosis has continued to become available for a greater number of congenital diseases, scientists have considered the possibility of correcting blood disorders such as sickle cell disease or thalassemia. After first transplanting a small number of healthy cells in an early-stage fetus to establish tolerance, a second dose of transplanted cells later in gestation would proliferate, and treat the blood disorder before birth. Researchers use hematopoietic cellsstem cells that that develop into blood cellsin this technique, in utero hematopoietic cell transplantation (IUHCT).

However, over the years, Flake's team and other research groups found that IUHCT studies in animal models yielded inconsistent results, ranging from no tolerance to transplants to full tolerance and every degree of tolerance in between. Contrary to the concept of fetal tolerance, an immune barrier seemed to be acting against transplanted cells.

The current study, done in mice, solves the puzzle of an apparent immune barrier. Newborn mice (pups) that received cell transplants in utero were divided into two groups. Mice nursed by their biological mothers lost the transplanted donor cells, while mice nursed by foster mothers retained those donor cells.

The mothers whose fetuses received the donor cells transplants had developed antibodies against those cells, and subsequently transmitted those antibodies to their pups through breast milk. "Those antibodies in the breast milk triggered rejection of the transplanted blood cells in the pups," said Flake. "But in the absence of a maternal immune response, we confirmed that immune tolerance does occur in the early-gestation fetus 100 percent of the time."

Of course, mouse biology is not the same as human biology, and Flake added, "Mouse time is not the same as human time." Because mice have such a brief gestational period, the mother's immune response didn't develop until after the birth of her pups, and was therefore transferred by breastfeeding. In large animals and humans, said Flake, the more likely route of maternal-to-fetal transmission would be through the placenta late in pregnancy, and not through postnatal breastfeeding.

However, it remains an open question whether the mouse findings are applicable to larger mammals and especially to humans. Flake's study team is continuing their investigations in larger animal models.

Looking forward to techniques to avoid maternal immune reactions to prenatal cell transplants, Flake proposed two possibilities. One would be use the mother as a source of donor cells, which would not stimulate an unwanted immune response. Another strategy could involve inducing the generation of increased numbers of T regulatory cells; those cells normally act to prevent the fetus from inappropriately reacting against maternal cells.

The ultimate goal, said Flake, is to develop IUHCT as a prenatal treatment for any congenital blood disorder that may currently be treated with postnatal bone marrow transplants. That would include sickle cell disease, thalassemia, and some inherited immunodeficiency diseases. Currently such postnatal transplants are risky and relatively rare.

"Our current finding is not a clinical breakthrough," added Flake. "But it does offer new potential to the field of cellular transplantation."


'/>"/>

Contact: Rachel Salis-Silverman
Salis@email.chop.edu
267-426-6063
Children's Hospital of Philadelphia
Source:Eurekalert

Related biology news :

1. Babies born to native high-altitude mothers have decreased risk of low birth weight
2. Mothers give interlopers offspring a head start in life
3. Mothers of multiple births at increased odds of postpartum depression
4. Older killer whales make the best mothers
5. Facebook flack regarding breastfeeding mothers
6. Mothers pass on disease clues to offspring
7. Vitamin D deficiency in infants and nursing mothers carries long-term disease risks
8. Mice mothers devote energies to offspring when life is threatened
9. Too much or too little weight gain poses risks to pregnant mothers, babies
10. Negligent, attentive mouse mothers show biological differences
11. Hungry mothers risk addiction in their adult children
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... 11, 2017 Crossmatch®, a globally-recognized leader ... today announced that it has been awarded a ... Activity (IARPA) to develop next-generation Presentation Attack Detection ... "Innovation has been a driving force within Crossmatch ... allow us to innovate and develop new technologies ...
(Date:4/5/2017)... SEATTLE , April 5, 2017  The Allen ... the Allen Cell Explorer: a one-of-a-kind portal and dynamic ... large-scale 3D imaging data, the first application of deep ... edited human stem cell lines and a growing suite ... the platform for these and future publicly available resources ...
(Date:3/30/2017)... ANGELES , March 30, 2017  On April ... Hack the Genome hackathon at Microsoft,s ... exciting two-day competition will focus on developing health and ... Hack the Genome is the ... been tremendous. The world,s largest companies in the genomics, ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... BARBARA, CALIFORNIA (PRWEB) , ... October 10, 2017 ... ... management, technological innovation and business process optimization firm for the life sciences and ... BoxWorks conference in San Francisco. , The presentation, “Automating GxP Validation ...
(Date:10/9/2017)... ... October 09, 2017 , ... The award-winning American Farmer television series ... 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. , With global population ... challenge of how to continue to feed a growing nation. At the same time, ...
(Date:10/9/2017)... , ... October 09, 2017 ... ... on October 5, 2017, in the medical journal, Epilepsia, Brain Sentinel’s SPEAC® ... gold standard, video EEG, in detecting generalized tonic-clonic seizures (GTCS) using surface ...
(Date:10/7/2017)...  The 2017 Nobel Prize in Chemistry recognizes ... Joachim Frank and Richard Henderson ... (cryo-EM) have helped to broaden the use ... The winners worked with systems manufactured by Thermo ... resolved, three-dimensional images of protein structures that lead ...
Breaking Biology Technology: