Navigation Links
More than 1 way to be healthy: Map of bacterial makeup of humans reveals microbial rare biosphere
Date:6/13/2012

WOODS HOLE, MASS. The landmark publication this week of a "map" of the bacterial make-up of healthy humans has deep roots in an unexpected place: the ocean.

Microbial communities that live on and in the human body, known collectively as the microbiome, are thought to have a critical role in human health and disease. Five years ago, the National Institutes of Health launched the ambitious Human Microbiome Project (HMP) to define the boundaries of bacterial variation found in 242 healthy human beings.

"In order to understand what sick is, it's helpful to define the healthy microbiome first," says MBL scientist Susan M. Huse, lead author of one of the HMP reports published this week.

The project's 200 scientists from 80 institutions, including Huse and Mitchell Sogin from the MBL, faced the daunting task of making sense of more than 5,000 samples of human and bacterial DNA and 3.5 terabases of genomic data.

The solution? The HMP adopted several, state-of-the-art genetic sequencing and analysis methods, many of which were originally developed by the MBL for the International Census of Marine Microbesa massive, ten-year project that yielded the first inventory of microbial diversity in the world's oceans.

And, perhaps not surprisingly, the HMP discovered that microbial distributions in the human body are not so different from those in ocean ecosystems.

Whether in the human gut, mouth, or vagina, the Pacific Ocean or the Sargasso Sea, microbial communities contain a few highly abundant bacterial types plus many, many more low-abundance types (the so-called "rare biosphere," a phenomenon first discovered in ocean samples by Sogin and his MBL colleagues).

"The more closely we look, the more bacterial diversity we find," Huse says. "We can't even name all these kinds of bacteria we are discovering in human and environmental habitats. It's like trying to name all the stars." HMP researchers concluded that an estimated 10,000 bacterial species occupy the human microbiome.

The HMP also confirmed that in people, like in the ocean, which bacteria are abundant and which are rare varies from site to site. The common bacterium Bacteroides, for instance, can comprise nearly 100% of the microbes in one person's gut, yet be barely present in another's.

"What this means is, there is not just one way to be healthy, " says Huse. "There doesn't have to be one or two 'just right' gut communities, but rather a range of 'just fine' communities."

Another key finding of the HMP is that nearly everyone carries pathogensmicrobes known to cause illness. In healthy individuals, however, pathogens cause no disease; they simply co-exist with the rest of the rare and abundant microbes in the person's microbiome. Researchers now must figure out why some pathogens turn deadly and under what conditions, likely revising current concepts of how microorganisms cause disease.

"It's really important to understand how and why these rare organisms 'swing,'" Huse says. "And one of the problems we have is people take antibiotics, which really change the microbiome. Antibiotics can kill the abundant bacteria, which then allows the rare bacteria to flourish in a gut environment full of food. If the rare bacteria include a pathogen, then you can get sick."

The HMP employed two major strategies to characterize the microbes in 18 different sites in the mouth, nose, skin, vagina, and stool of the volunteers. The first strategy told them "who" was there. Called 16s rRNA tag sequencing, the MBL first adapted this method for "next-generation" sequencing in the mid-2000s, in order to identify which microbes were present in ocean samples and their relative abundances. (Next-generation sequencing produces large volumes of sequencing data much more inexpensively than traditional methods.) The second strategy the HMP adopted, called shotgun sequencing, was employed to find out what functions the microbes might be performing.

"Now we have a list of 'who' is in the human microbiome, and another list of what they are doing. Part of the task ahead is to tie together which organisms are doing what functions," Huse says.

Understanding how people are the same, despite the variations in their microbiomes, is another significant challenge for future investigation. "At some level there have to be similarities, because we are all eating and digesting and so forth," Huse says. "Perhaps the different aspects of digestion and immune system interaction can be performed by a variety of different assemblages of bacteria."


'/>"/>

Contact: Diana Kenney
dkenney@mbl.edu
508-685-3525
Marine Biological Laboratory
Source:Eurekalert  

Related biology news :

1. Bacterial shock to recapture essential phosphate
2. Researchers develop rapid test strips for bacterial contamination in swimming water
3. The activity of a bacterial effector protein seen in molecular detail
4. Copy of the genetic makeup travels in a protein suitcase
5. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
6. Bartonella infection associated with rheumatoid illnesses in humans
7. Research reveals first evidence of hunting by prehistoric Ohioans
8. Study reveals how monarch butterflies recolonize northern breeding range
9. Circadian rhythms have profound influence on metabolic output, UCI study reveals
10. Unexpected discovery reveals a new mechanism for how the cerebellum extracts signal from noise
11. Study by Haverford College professor reveals unprecedented impact of Deepwater Horizon on deep ocean
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
More than 1 way to be healthy: Map of bacterial makeup of humans reveals microbial rare biosphere
(Date:3/9/2017)... FRANCISCO and MOUNTAIN VIEW, Calif. ... , "Eating Well Made Simple," and 23andMe , ... help guide better food choices.  Zipongo can now provide ... their food preferences, health goals and biometrics, but also ... certain food choices. Zipongo,s personalized food decision ...
(Date:3/2/2017)... , March 2, 2017 Summary ... understand Perrigo and its partnering interests and activities since 2010. ... Read ... Deals and Alliance since 2010 report provides an in-depth insight ... life sciences companies. On demand company reports are ...
(Date:3/1/2017)... 2017  Aware, Inc. (NASDAQ: AWRE), a leading supplier ... P. Moberg has resigned, effective March 3, 2017, ... Officer and Treasurer of Aware citing a desire to ... member of the Board of Directors of Aware. ... Officer and co-President, General Counsel has been named Chief ...
Breaking Biology News(10 mins):
(Date:3/23/2017)... 23, 2017  Agriculture technology company Cool Planet has ... note conversion to commercialize its Cool Terra and Cool ... developing products that are simultaneously profitable as well as ... last 18 months. This latest round of funding was ... The company,s primary product, Cool Terra, ...
(Date:3/22/2017)... 2017 Regeneron Pharmaceuticals, Inc. (NASDAQ: REGN), today announced ... U.K. Biobank and GSK to generate genetic sequence data from ... initiative will enable researchers to gain valuable insights to support ... range of serious and life threatening diseases. ... Genetic evidence has ...
(Date:3/22/2017)... SANTA MONICA, Calif. , March 22, 2017 ... Council (MassMEDIC) are proud to announce their extended partnership ... Week will be headlined by the 21 st ... UBM,s BIOMEDevice Boston, taking place May 3-4, 2017. ... with Advanced Medical Technology Association (ADVAMED) President and ...
(Date:3/22/2017)... 2017   iSpecimen ®, the marketplace ... Pathology Service (DPS), a full-service anatomic pathology reference ... United States , has joined a program offered ... (DHIN) to make human biospecimens and associated data ... program, announced in 2015 as a collaboration between iSpecimen ...
Breaking Biology Technology: