Navigation Links
More effective and less risky when you paint the hull of your boat
Date:5/9/2011

Every boat owner recognises the dilemma: environmentally friendly or effective. Researchers at the University of Gothenburg have now found a way of reconciling these two almost unattainable aims. By using smart combinations of the most environmentally friendly biocides in the paint, it is possible to both reduce the total quantity of biocides and dramatically reduce the environmental impact.

"It's very easy to make an environmentally friendly hull paint, and just as easy to make an effective hull paint. Yet there is still no paint that is both effective and environmentally friendly, which leaves both environmental authorities and boat owners dissatisfied," says Hans Blanck, Professor of Ecotoxicology at the Department of Plant and Environmental Sciences of the University of Gothenburg.

Professor Blanck has directed several sub-projects in the interdisciplinary research programme Marine Paint, which is financed by Mistra. Marine Paint is Sweden's largest combined research programme in the area of marine fouling and environmentally sound hull paints. The project began in 2003 with a substance that had been found to be effective against barnacles: medetomidine. Today the researchers are developing formulas to prevent all types of fouling through what are known as optimised blends of biocides, that is to say substances that can kill or otherwise cause problems for living organisms.

"The hull paints of today often contain one or two different biocides, and they need to be highly dosed to eliminate all types of fouling organisms. The idea behind optimised blends is to base them on several complementary biocides in the paint. In this way the combinations make more efficient use of each biocide and less overdosing is needed. We get rid of all fouling and the total need for biocides in the paint is reduced dramatically as a result."

To devise formulas for optimal blends, the researchers have developed a system of models in which the effect of different biocides on different types of fouling organisms is weighed up against the expected environmental risk. The result is a set of formulas with different concentrations and combinations of biocides that all are equally effective in preventing fouling. What distinguishes them is the anticipated risk to the environment. The formulas can therefore be adapted effectively to different conditions. The substances that the researchers have selected, in addition to medetomidine, are biocides that are on the market today and that will probably pass the ongoing evaluation under the EU Biocidal Products Directive.

Another common problem with present-day hull paints is that the active substances leach out too quickly. Large amounts of biocides are therefore needed for the paint to be effective over a long period.

"By using what are known as microcapsules, a microscopic bubble of polymer material containing dissolved bioicides, we can control release better. This technique works for virtually any biocide."


'/>"/>

Contact: Hans Blanck
hans.blanck@dpes.gu.se
46-031-786-2609
University of Gothenburg
Source:Eurekalert  

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Commercial aquatic plants offer cost-effective method for treating wastewater
3. RNA molecules, delivery system improve vaccine responses, effectiveness
4. Cost-effective farm waste-to-energy technology focus of research
5. New Study Reveals the Emotional Impact and Effectiveness of Negative Campaigning
6. New study indicates smallpox vaccination effective for decades
7. Fractional dose of scarce meningitis vaccine may be effective in outbreak control
8. Flame retardants prove ineffective on fresh-cut Christmas trees
9. Flame retardants prove ineffective on fresh-cut Christmas trees
10. Organic plant waste proves effective weed control for citrus trees
11. Vidalia onions: Alternative to hand-transplanting proven effective
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
More effective and less risky when you paint the hull of your boat
(Date:4/28/2016)... 28, 2016 First quarter 2016:   ... compared with the first quarter of 2015 The gross ... M (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... is unchanged, SEK 7,000-8,500 M. The operating margin for ...
(Date:4/15/2016)...  A new partnership announced today will help ... in a fraction of the time it takes ... life insurance policies to consumers without requiring inconvenient ... Diagnostics, rapid testing (A1C, Cotinine and HIV) and ... weight, pulse, BMI, and activity data) available at ...
(Date:3/31/2016)... 31, 2016   ... the "Company") LegacyXChange is excited to release ... soon to be launched online site for trading 100% ... ) will also provide potential shareholders a sense of ... to an industry that is notorious for fraud. The ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... ... Supplyframe, the Industry Network for electronics hardware design and ... in Pasadena, Calif., the Design Lab’s mission is to bring together inventors and ... brought to market. , The Design Lab is Supplyframe’s physical representation of one ...
(Date:6/23/2016)... , June 23, 2016 Apellis Pharmaceuticals, ... 1 clinical trials of its complement C3 inhibitor, ... and multiple ascending dose studies designed to assess ... of subcutaneous injection in healthy adult volunteers. ... either as a single dose (ranging from 45 ...
(Date:6/23/2016)... NEW YORK , June 23, 2016 ... the trading session at 4,833.32, down 0.22%; the Dow Jones ... the S&P 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ... BIND Therapeutics Inc. (NASDAQ: BIND ). Learn more ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, ... tools designed, tuned and optimized exclusively for Okuma CNC machining centers at The ... of a collaboration among several companies with expertise in toolholding, cutting tools, machining ...
Breaking Biology Technology: