Navigation Links
More asteroids could have made life's ingredients
Date:1/19/2011

A wider range of asteroids were capable of creating the kind of amino acids used by life on Earth, according to new NASA research.

Amino acids are used to build proteins, which are used by life to make structures like hair and nails, and to speed up or regulate chemical reactions. Amino acids come in two varieties that are mirror images of each other, like your hands. Life on Earth uses the left-handed kind exclusively. Since life based on right-handed amino acids would presumably work fine, scientists are trying to find out why Earth-based life favored left-handed amino acids.

In March, 2009, researchers at NASA's Goddard Space Flight Center in Greenbelt, Md., reported the discovery of an excess of the left-handed form of the amino acid isovaline in samples of meteorites that came from carbon-rich asteroids. This suggests that perhaps left-handed life got its start in space, where conditions in asteroids favored the creation of left-handed amino acids. Meteorite impacts could have supplied this material, enriched in left-handed molecules, to Earth. The bias toward left-handedness would have been perpetuated as this material was incorporated into emerging life.

In the new research, the team reports finding excess left-handed isovaline (L-isovaline) in a much wider variety of carbon-rich meteorites. "This tells us our initial discovery wasn't a fluke; that there really was something going on in the asteroids where these meteorites came from that favors the creation of left-handed amino acids," says Dr. Daniel Glavin of NASA Goddard. Glavin is lead author of a paper about this research published online in Meteoritics and Planetary Science January 17.

"This research builds on over a decade of work on excesses of left-handed isovaline in carbon-rich meteorites," said Dr. Jason Dworkin of NASA Goddard, a co-author on the paper.

"Initially, John Cronin and Sandra Pizzarello of Arizona State University showed a small but significant excess of L-isovaline in two CM2 meteorites. Last year we showed that L-isovaline excesses appear to track with the history of hot water on the asteroid from which the meteorites came. In this work we have studied some exceptionally rare meteorites which witnessed large amounts of water on the asteroid. We were gratified that the meteorites in this study corroborate our hypothesis," explained Dworkin.

L-isovaline excesses in these additional water-altered type 1 meteorites (i.e. CM1 and CR1) suggest that extra left-handed amino acids in water-altered meteorites are much more common than previously thought, according to Glavin. Now the question is what process creates extra left-handed amino acids. There are several options, and it will take more research to identify the specific reaction, according to the team.

However, "liquid water seems to be the key," notes Glavin. "We can tell how much these asteroids were altered by liquid water by analyzing the minerals their meteorites contain. The more these asteroids were altered, the greater the excess L-isovaline we found. This indicates some process involving liquid water favors the creation of left-handed amino acids."

Another clue comes from the total amount of isovaline found in each meteorite. "In the meteorites with the largest left-handed excess, we find about 1,000 times less isovaline than in meteorites with a small or non-detectable left-handed excess. This tells us that to get the excess, you need to use up or destroy the amino acid, so the process is a double-edged sword," says Glavin.

Whatever it may be, the water-alteration process only amplifies a small existing left-handed excess, it does not create the bias, according to Glavin. Something in the pre-solar nebula (a vast cloud of gas and dust from which our solar system, and probably many others, were born) created a small initial bias toward L-isovaline and presumably many other left-handed amino acids as well.

One possibility is radiation. Space is filled with objects like massive stars, neutron stars, and black holes, just to name a few, that produce many kinds of radiation. It's possible that the radiation encountered by our solar system in its youth made left-handed amino acids slightly more likely to be created, or right-handed amino acids a bit more likely to be destroyed, according to Glavin.

It's also possible that other young solar systems encountered different radiation that favored right-handed amino acids. If life emerged in one of these solar systems, perhaps the bias toward right-handed amino acids would be built in just as it may have been for left-handed amino acids here, according to Glavin.


'/>"/>

Contact: Bill Steigerwald
William.a.steigerwald@nasa.gov
301-286-5017
NASA/Goddard Space Flight Center
Source:Eurekalert  

Related biology news :

1. Vitiligo skin disorder could yield clues in fight against melanoma
2. Saliva proteins could help detection of oral cancer
3. Research about plant viruses could lead to new ways to improve crop yields
4. Nanodiamond drug device could transform cancer treatment
5. UNC study on properties of carbon nanotubes, water could have wide-ranging implications
6. So-called sandfish could help materials handling and process technology specialists
7. Discovery of natural compounds that could slow blood vessel growth
8. Researchers design artificial cells that could power medical implants
9. Herbicide-resistant grape could revitalize Midwest wine industry
10. Sensitive laser instrument could aid search for life on Mars
11. Could Dr. House be replaced by a computer?
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
More asteroids could have made life's ingredients
(Date:4/28/2016)... FRANCISCO and BANGALORE, India , ... of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... provider, today announced a global partnership that will ... way to use mobile banking and payment services. ... is a key innovation area for financial services, but it ...
(Date:4/15/2016)... April 15, 2016  A new partnership announced ... accurate underwriting decisions in a fraction of the ... priced and high-value life insurance policies to consumers ... With Force Diagnostics, rapid testing (A1C, Cotinine ... readings (blood pressure, weight, pulse, BMI, and activity ...
(Date:3/31/2016)... 2016  Genomics firm Nabsys has completed a financial ... Bready , M.D., who returned to the company in ... leadership team, including Chief Technology Officer, John Oliver ... Nurnberg and Vice President of Software and Informatics, ... Dr. Bready served as CEO of Nabsys from ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 2016 /PRNewswire/ - FACIT has announced the creation ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or "the ... a portfolio of first-in-class WDR5 inhibitors for the ... WDR5 represent an exciting class of therapies, possessing ... for cancer patients. Substantial advances have been achieved ...
(Date:6/23/2016)... , June 23, 2016  The Prostate Cancer Foundation (PCF) ... precise treatments and faster cures for prostate cancer. Members of the Class of ... 15 countries. Read More About the Class of 2016 ... ... ...
(Date:6/23/2016)... ... , ... STACS DNA Inc., the sample tracking software company, today announced that ... joined STACS DNA as a Field Application Specialist. , “I am thrilled that ... of STACS DNA. “In further expanding our capacity as a scientific integrator, Hays brings ...
(Date:6/23/2016)... LONDON , June 23, 2016 ... & Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... Review , the peer-reviewed journal from touchONCOLOGY, ... the escalating cost of cancer care is placing ... a result of expensive biologic therapies. With the ...
Breaking Biology Technology: