Navigation Links
Montana State University researchers map iron transport protein
Date:5/20/2008

Montana State University scientists in the Department of Chemistry and Bio-chemistry published new research this week that could one day affect the lives of millions around the world who suffer from blood iron disorders.

The paper, which will appear in the Proceedings of the National Academy of Sciences, details the work of Associate Professor Martin Lawrence and doctoral candidate Anoop Sendamarai. The pair have spent the past two years studying Steap3, a protein involved in regulating the bodys absorption of iron.

The results of their studies the first three-dimensional maps of the atoms that make up Steap3 could allow pharmaceutical companies to someday design drugs to regulate iron levels in the blood.

Iron is essential, Lawrence said. You cant live without it, but its a double-edged sword. Too much of a good thing can kill you.

Iron serves several important functions in the bloodstream. It carries oxygen, transports electrons within cells and plays an important role in enzyme systems.

Iron irregularities are some of the most common blood disorders in the world. According to the World Health Organization, iron deficiency, which can lead to anemia, affects more than a billion people around the world and can cause developmental and immune system problems.

Conversely, having too much iron, a condition called hemochromatosis, can also hurt the body by releasing destructive free radicals, Lawrence said. Hemochromatosis affects about one in every 300 people and is most common in people of northern European ancestry. Left untreated, it can lead to early death, often by age 50.

Were struck by how many people have too much or too little iron, Lawrence said.

To understand Steap3s role in transporting and maintaining balanced levels of iron, Lawrence and Sendamarai first had find and purify samples of the protein and then turn those samples into crystals.

Lawrence said the result of the crystallization process, if done correctly, is analogous to the rigid structure of a brick wall. If done incorrectly, it more closely resembles a pile of bricks.

Its kind of a black art really more than a science, Lawrence said. You cant always predict the kind of witchs brew that needs to be around to get it to crystallize.

He said only a handful of labs in the country are crystallizing iron transport proteins like Steap3, a fact that places MSU on the same shelf as places like Harvard Medical School.

Once crystallized, the samples are shot with a powerful X-ray beam. Electrons in the sample diffract the X-rays, creating patterns on a digital sensor. The technique, called X-ray crystallography, has been used since the 1950s to de-termine the structure of different substances.

In their basement lab in the campuss New Chemistry Building, Lawrence and Sendamarai then examined the diffraction patterns created by Steap3.

Its kind of like a contour map, Sendamarai said. Whenever we see the peaks, we know there are atoms.

Working backward, they can mathematically determine the position of atoms in the protein and display them in three dimensions.

The computer-drawn result, a three-dimensional image that resembles tangled ribbons and strings, is an picture of what the atoms of Steap3 look like.

Sendamarai said having that picture, which depicts all the nooks and crannies on the proteins surface, could allow drug companies to design drugs to fit those spots like puzzle pieces.

If a future drug fits those nooks just right, it could help treat hemochroma-tosis. From there, Sendamarai said it would be conceivable to work backward and possibly treat iron deficiencies or anemia.

Lawrence said that Steap3 is only one in a family of proteins that affect iron transport. This summer, in addition to continuing to study Steap3, Lawrence and Sendamarai hope to learn whether the lab will receive a grant from the National Institutes of Health to work on other iron transport proteins.

Its a critical step towards toward learning to modulate iron levels in pa-tients with too much or too little iron, Sendamarai said. But, there are a lot of question marks left in iron transport. Its a big field.


'/>"/>

Contact: Michael Becker
becker@montana.edu
406-994-5140
Montana State University
Source:Eurekalert

Related biology news :

1. New dinosaur species found in Montana
2. Montana State University researcher finds renewed interest in turning algae into fuel
3. Mongolian paleontologists with a dream come to Montana State University
4. Antarcticas coldest, darkest season draws Montana State University researchers
5. Low exposure to asbestos-like mineral from Montana vermiculite may up lung disease risk
6. Montana State researchers study spread of lake trout in Glacier National Park
7. Montana State University research reaches Supreme Court of India
8. Obesity and the central nervous system -- the state of the art
9. University of Minnesota study refutes belief that black men have more aggressive prostate cancer
10. Iowa State University conference examines developing bioeconomy
11. University and state agencies to forecast local health effects of climate change
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... LONDON , April 26, 2016 ... a product subsidiary of Infosys (NYSE: ... to integrate the Onegini mobile security platform with ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration will ... to access and transact across channels. Using this ...
(Date:4/15/2016)... April 15, 2016 Research ... Gait Biometrics Market 2016-2020,"  report to their offering.  ... ) , ,The global gait biometrics market is ... during the period 2016-2020. Gait analysis ... can be used to compute factors that are ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys ... founding CEO, Barrett Bready , M.D., who returned ... of the original technical leadership team, including Chief Technology ... of Product Development, Steve Nurnberg and Vice President of ... to the company. Dr. Bready served as ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly ... technologies, services and solutions to the healthcare market. The company's primary focus is ... manufacturing, sales and marketing strategies that are necessary to help companies efficiently bring ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/23/2016)... , June 23, 2016   Boston ... of novel compounds designed to target cancer stemness ... has been granted Orphan Drug Designation from the ... treatment of gastric cancer, including gastroesophageal junction (GEJ) ... inhibitor designed to inhibit cancer stemness pathways by ...
(Date:6/23/2016)...  The Prostate Cancer Foundation (PCF) is pleased to announce 24 ... for prostate cancer. Members of the Class of 2016 were selected from a ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: