Navigation Links
Monitoring and robust induction of nephrogenic intermediate mesoderm from human iPSCs
Date:1/25/2013

The research group led by Associate Professor Kenji Osafune and his colleague Shin-ichi Mae, both from Center for iPS Cell Research and Application (CiRA), Kyoto University in Japan, has succeeded in developing a highly efficient method of inducing human induced pluripotent stem (iPS) cells to differentiate into intermediate mesoderm, the precursor of kidney, gonad, and other cell lineages. This represents a major step toward realizing renal regeneration.

As nearly all kidney cells are derived through differentiation from intermediate mesoderm, to realize kidney regeneration requires first the development of an efficient technology for differentiating human iPS or embryonic stem (ES) cells into intermediate mesoderm.

The research team established a method through which fluorescent protein can be readily inserted into the human iPS/ES cell genome through homologous recombination and used it in human iPS cells to successfully introduce green fluorescent protein (GFP) into Odd-skipped related 1: (OSR1), a marker gene for intermediate mesoderm differentiation. This makes it possible to ascertain whether differentiation into the target intermediate mesoderm cells has been achieved.

The system was then used to establish a protocol for inducing iPS cell differentiation into intermediate mesoderm which produced a high success rate of 90% or more. It was confirmed that the resulting human intermediate mesoderm was able to differentiate into various types of kidney cell, and renal tubule structures were successfully generated.

The findings indicate the possibility of using iPS cells to create a supply of cells for use in renal regenerative medicine. The differentiation system developed by the researchers is also expected to provide a new research tool to help elucidate the developmental mechanism of intermediate mesoderm.

The next step required is to develop a technique that allows efficient and specific differentiation into kidney cells using intermediate mesoderm derived from human iPS/ES cells. As intermediate mesoderm is known to differentiate into the three different lineages of kidney, adrenal cortex, and gonad cells, the new technique has potential application in regenerative medicine not only for the kidney but also for the adrenal cortex and gonad.


'/>"/>
Contact: CiRA International Public Communications Office
cira-pr@cira.kyoto-u.ac.jp
81-753-667-000
Center for iPS Cell Research and Application - Kyoto University
Source:Eurekalert

Related biology news :

1. Chemical pollution in Europes seas: The monitoring must catch up with the science
2. New CU-NOAA monitoring system clarifies murky atmospheric questions
3. Tattoo-like devices for wireless pregnancy monitoring
4. Preventice Expands Options for Wireless Patient Monitoring with Qualcomm Life
5. NTU start-up launches worlds first 3-in-1 water monitoring system
6. Forest carbon monitoring breakthrough in Colombia
7. Ecological monitoring on bird populations in Europe re-evaluated
8. Sandia shows monitoring brain activity during study can help predict test performance
9. Detection, analysis of cell dust may allow diagnosis, monitoring of brain cancer
10. Call for global monitoring of infectious diseases in dogs and cats
11. Wildlife monitoring cameras click jaguar and ocelot photos
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... Apr. 11, 2017 Research and Markets has ... report to their offering. ... The global eye tracking market to grow at a CAGR of ... Eye Tracking Market 2017-2021, has been prepared based on an in-depth ... market landscape and its growth prospects over the coming years. The ...
(Date:4/5/2017)... 5, 2017 Today HYPR Corp. , ... server component of the HYPR platform is officially ... end-to-end security architecture that empowers biometric authentication across Fortune ... already secured over 15 million users across the financial ... connected home product suites and physical access represent a ...
(Date:3/30/2017)... -- The research team of The Hong Kong Polytechnic ... by adopting ground breaking 3D fingerprint minutiae recovery and matching technology, ... accuracy for use in identification, crime investigation, immigration control, security of ... ... A research team led by Dr ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... (PRWEB) , ... October 12, ... ... today announces publication of a United States multicenter, prospective clinical study that ... disposable, point-of-care diagnostic test capable of identifying clinically significant acute bacterial and ...
(Date:10/11/2017)... ... 11, 2017 , ... At its national board meeting in ... Sheikh, the co-founder, CEO and chief research scientist of Minnesota-based Advanced Space Technology ... in ARCS Alumni Hall of Fame . ASTER Labs is a technology ...
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia Inc ., ... a Webinar titled, “Pathology is going digital. Is your lab ready?” with Dr. ... best practices and how Proscia improves lab economics and realizes an increase in ...
(Date:10/11/2017)... ... 2017 , ... A new study published in Fertility and ... in vitro fertilization (IVF) transfer cycles. The multi-center matched cohort study ... comparing the results from the fresh and frozen transfer cohorts, the authors of ...
Breaking Biology Technology: