Navigation Links
Monash scientists uncover a new understanding of male puberty
Date:3/14/2011

Scientists from Monash University have uncovered a new understanding of how male puberty begins.

The key to their findings lies with a protein known as SMAD3 and the rate at which it is produced. Researchers, Associate Professor Kate Loveland and Dr Catherine Itman from the Faculty of Medicine, Nursing and Health Sciences have discovered through laboratory testing that half as much SMAD3 protein results in faster maturation than the norm, and an inability to create SMAD3 results in abnormal responses to testosterone.

"SMAD3 is a protein that translates signals from the environment outside the cell to the nucleus, where it switches genes on or off," Dr Itman said. "We have been investigating how SMAD3 influences the growth of testis cells and their ability to respond to testosterone".

Puberty begins when the body starts to produce large amounts of the hormone testosterone. Early, or precocious, puberty involves the onset of puberty before eight years of age and affects around 1 in 10,000 boys. On the other hand, puberty is delayed when testis cells cannot respond normally to testosterone. Altered timing of puberty has implications in adulthood, with precocious puberty linked to reduced adult height and delayed puberty associated with reduced bone density.

Testosterone acts through specialized cells in the testis called Sertoli cells. Before puberty, Sertoli cells multiply, allowing the testis to grow. At puberty, Sertoli cells must stop growing so they can support sperm precursor cells to develop into sperm.

Professor Loveland, Dr Itman and their colleagues have been investigating how Sertoli cells switch from a multiplying state, making the testis big enough to make sperm, to a mature state that sustains sperm production.

"We have discovered that this is not an "on-off" switch. Rather, it is the amount of the SMAD3 protein in the Sertoli cell that is different in the immature, multiplying Sertoli cell compared to the mature, adult cell". The research identified that it is the amount of SMAD3 present that controls Sertoli cell activity prior to, or after, puberty. When SMAD3 levels are reduced, sperm develop earlier. When SMAD3 is absent, Sertoli cells take longer to respond to testosterone.

Previous research on puberty suggests that pubertal development is delayed in boys exposed to endocrine disrupting compounds, chemicals which impair cell responses to hormones. These chemicals are widely used in industry and in the manufacture of everyday items, such as plastics, cosmetics, paints and detergents.

Dr Itman is supported by a National Health and Medical Research Council (NHMRC) Early Career Project Grant to investigate how these hormone-disrupting chemicals in the environment affect the growth and maturation of Sertoli cells around puberty, including changes to SMAD3 levels and activity.

"We hope that through our research, we will inform decisions about the influence of chemicals in our environment on the timing of puberty in boys and on the fertility of adult men" Dr Itman said.


'/>"/>

Contact: Karen Sutherland
karen.sutherland@monash.edu
61-399-034-844
Monash University
Source:Eurekalert

Related biology news :

1. Monash scientists debug superbug
2. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
3. Scientists identify novel inhibitor of human microRNA
4. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
5. MU scientists go green with gold, distribute environmentally friendly nanoparticles
6. Scientists identify gene that may contribute to improved rice yield
7. Scientists discover why a mothers high-fat diet contributes to obesity in her children
8. MU scientists see how HIV matures into an infection
9. Earth scientists keep an eye on Texas
10. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
11. Scientists identify a molecule that coordinates the movement of cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/16/2016)... YORK , Dec. 16, 2016 The global wearable ... USD 12.14 billion by 2021 from USD 5.31 billion in 2016, ... ... is mainly driven by technological advancements in medical devices, launch of ... rising preference for wireless connectivity among healthcare providers, and increasing focus ...
(Date:12/15/2016)... Dec. 15, 2016 Advancements in ... health wellness and wellbeing (HWW), and security ... three new passenger vehicles begin to feature ... recognition, heart beat monitoring, brain wave monitoring, ... monitoring, and pulse detection. These will be ...
(Date:12/8/2016)... Research Future published a half cooked research report on Mobile Biometric ... Market is expected to grow over the CAGR of ~35% during ... ... Mobile Biometric Security and Service Market is increasing at a ... security from unwanted cyber threats. The increasing use of mobile device ...
Breaking Biology News(10 mins):
(Date:1/21/2017)... ... ... Nipro Corporation (Osaka, Japan) and Transonic Systems Inc. (New York, USA) announced ... and sales rights for all non-OEM Transonic products in Japan. As partners for more ... Nipro - Transonic JV is a natural next step to advance best practices and ...
(Date:1/21/2017)... , Jan. 21, 2017   Boston Biomedical ... compounds designed to target cancer stemness pathways, today presented ... compound, napabucasin, at the 2017 American Society of Clinical ... Francisco . In a Phase ... agent designed to inhibit cancer stemness pathways by targeting ...
(Date:1/20/2017)... ... January 20, 2017 , ... ... Surgery (LES®) Technologies, announced today the next evolution in spinal fusion, the ... platform). In contrast to the competition, SpineFrontier is focused on technique driven ...
(Date:1/19/2017)... 19, 2017 Research and Markets ... has announced the addition of the ... Forecast to 2025" report to their offering. ... The report provides a detailed analysis on current and future market trends ... using estimated market values as the base numbers Key ...
Breaking Biology Technology: