Navigation Links
Monash researchers uncover cancer survival secrets
Date:8/11/2008

A team of Monash University researchers has uncovered the role of a family of enzymes in the mutation of benign or less aggressive tumours into more aggressive, potentially fatal, cancers in the human body.

The discovery, published today in the international journal Cancer Cell, provides valuable insights into how cancer cells develop and mutate, and could ultimately change treatment options for sufferers around the world.

Team leader, Associate Professor Tony Tiganis, from the Department of Biochemistry and Molecular Biology at Monash University said their work showed that the enzymes known as protein tyrosine kinases (PTKs) had a greater role than previously thought in the rate of growth and tumour change over time.

"We already know that PTKs are associated with several types of aggressive cancers, including colon, breast and lung cancers," Associate Prof Tiganis said.

"What we have discovered is that PTKs have an important role to play as cancer cells grow and mutate to become potentially more aggressive tumours.

"The more we can learn about how tumours develop, the more we are able to prevent their growth in the future. There are already drugs that inhibit particular PTKs in the late stages of treatment. Our discovery could change the timing of when and how those or similar drugs are administered."

Assoc Professor Tiganis said all cells routinely divide and duplicate during growth. An entire genome is replicated and divides equally into two daughter cells. Sometimes things go wrong. To try to prevent this, nature has installed key cell surveillance checkpoints where molecular 'wardens' slow down DNA replication to try and correct mistakes to get the cell duplication back on track.

Normally, PTKs are turned off in the face of compromised DNA replication, but when PTK pathways remain on, unscheduled cell division can take place where cells distribute their DNA unevenly between the two resulting daughter cells. As a result, tumour cells can accumulate or lose genes and chromosomes, and gain a growth and survival advantage.

"Our studies have shown that PTK pathways are intimately associated with the regulation of checkpoint responses during DNA replication," Assoc Prof Tiganis said.

"We have identified one mechanism by which PTKs may remain activated and allow cancer cells to bypass the molecular warden of DNA replication. They may lack a key enzyme called TCPTP." Experiments published in the prestigious journal Cancer Cell have been conducted using cells grown in the laboratory. "But the big question remains. What happens in the real world of human cancers?"

The Monash team will now apply their laboratory findings to human cancer samples to see if they contain low levels of TCPTP and hopefully cement the role of this protein in cancer formation and development.


'/>"/>

Contact: Samantha Blair
samantha.blair@adm.monash.edu.au
039-903-4841
Monash University
Source:Eurekalert

Related biology news :

1. Monash researcher receives prestigious Commonwealth Health Ministers award
2. USC researchers identify alternate pathway that leads to palate development
3. Researchers block damage to fetal brain following maternal alcohol consumption
4. In scientific first, Einstein researchers correct decline in organ function associated with old age
5. Researchers find cancer-inhibiting compound under the sea
6. UT Health Science Center researchers study diet and autism
7. UGA researchers win $9.2 million stem cell grant from NIH
8. Broad Institute researchers introduce next generation tool for visualizing genomic data
9. Spanish researchers discover significant leatherback turtle nesting beaches in the Caribbean
10. ORNL researchers analyze material with colossal ionic conductivity
11. UNH researchers tag first-ever free-swimming leatherback turtles in New England
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... YORK , April 5, 2017 Today ... is announcing that the server component of the HYPR ... known for providing the end-to-end security architecture that empowers ... HYPR has already secured over 15 million ... makers including manufacturers of connected home product suites and ...
(Date:3/30/2017)... KONG , March 30, 2017 The ... a system for three-dimensional (3D) fingerprint identification by adopting ground breaking ... into a new realm of speed and accuracy for use in ... at an affordable cost. ... ...
(Date:3/24/2017)... The Controller General of Immigration from Maldives Mr. Mohamed Anwar ... the prestigious international IAIR Award for the most innovative high security ePassport ... ... Maldives Immigration Controller General, Mr. ... on the right) have received the IAIR award for the "Most innovative ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... ... 23, 2017 , ... A recent survey conducted by the Weed Science Society ... weed in 12 categories of broadleaf crops, fruits and vegetables, while common lambsquarters ranks ... and Canada participated in the 2016 survey, the second conducted by WSSA. A ...
(Date:5/23/2017)... ... ... Vortex Biosciences , provider of circulating tumor cell (CTC) capture systems, ... Vortex microfluidic technology ” in Nature Precision Oncology on May 8th. The peer ... Dr. Matthew Rettig at the University of California, Los Angeles. The publication describes the ...
(Date:5/23/2017)... ... May 23, 2017 , ... Customers often prefer PLC ... and again. METTLER TOLEDO has released two new videos that show how they ... of the ACT350 into Siemens and Allen Bradley PLCs is easy and fast. ...
(Date:5/21/2017)... San Diego, CA (PRWEB) , ... May 20, ... ... decision support tool that helps avoid the lengthy trial and error process by ... for patients. It can also strengthen the doctor-patient relationship through a personalized ...
Breaking Biology Technology: