Navigation Links
Molecule that spurs cell's recycling center may help Alzheimer's patients
Date:3/16/2011

Cells, which employ a process called autophagy to clean up and reuse protein debris leftover from biological processes, were the original recyclers. A team of scientists from Paul Greengard's Rockefeller University laboratory have linked a molecule that stimulates autophagy with the reduction of one of Alzheimer's disease's major hallmarks, amyloid peptide. Their finding suggests a mechanism that could be used to eliminate built-up proteins in diseases such as Alzheimer's, Down syndrome, Huntingdon's and Parkinson's.

The molecule, called SMER28, spurs autophagy, which in turn eliminates unwanted materials such as amyloid-beta, the protein aggregates that cause Alzheimer's plaques. Increasing autophagy, either through a drug or a natural process such as diet, could improve the outcome for people with neurodegenerative diseases, the researchers report in the FASEB Journal.

"Much effort has been carried out to prevent the formation of amyloid-beta without much success," says Greengard, who is Vincent Astor Professor and head of the Laboratory of Molecular and Cellular Neuroscience. "In order to develop better-suited therapies, alternative approaches are clearly needed. One approach would be the identification of potential therapeutic targets that enhance the removal of amyloid-beta, for example, by increasing autophagy."

Most prior strategies to develop Alzheimer's disease drugs were designed to inhibit the formation of the toxic amyloid-beta. Greengard, who directs the Fisher Center for Research on Alzheimer's Disease at Rockefeller, and his colleagues propose a radically different approach: boosting a cellular mechanism to enhance their clearance. This approach, says Marc Flajolet, a research assistant professor in Greengard's lab, may also be beneficial for targeting a hallmark of advanced Alzheimer's disease, twisted fibers of tau protein that build up inside nerve cells and cause tangles.

The researchers, led by Yuan Tian, a postdoctoral fellow in Greengard's lab, tested various compounds for their ability to reduce the buildup of amyloid-beta by exposing cultured cells to compounds known to activate autophagy. They then compared the effect of these compounds by removing growth factors from the culture medium, a well-established stimulant of autophagy known as "starvation."

The researchers found that SMER28 was the most effective compound, and focused their studies on it to characterize the cellular components involved in this phenomenon. They compared the effect of SMER28 on amyloid-beta formation using normal cells or cells where the expression of genes known to be involved in autophagy was reduced or abolished. They found that three important autophagic players were involved, and one of them was essential for SMER28's effect.

Identifying a cure for Alzheimer's disease remains a major challenge. Four drugs are currently approved by the Food and Drug Administration to treat Alzheimer patients. Unfortunately none of these drugs halt progression of the disease and their impact on cognitive defects are minimal. On top of that, current strategies are associated with severe side effects. This limitation was highlighted recently by failures in various clinical trials.

"Our work demonstrates that small molecules can be developed as therapies, by activating a cellular function called autophagy, to prevent Alzheimer's disease," says Flajolet. "By increasing our understanding of autophagy, it might be possible to stimulate it, pharmacologically or naturally, to improve the quality of life for aging people."

The results also suggest the power of diet to prevent damage to neurons. It has been known that a low calorie diet is beneficial for longer life expectancy as well as for neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. "Our results suggest that a low calorie diet might lead to a higher autophagy activity that might delay or prevent aging and neurodegenerative diseases," says Flajolet.


'/>"/>

Contact: Joseph Bonner
bonnerj@rockefeller.edu
212-327-8998
Rockefeller University
Source:Eurekalert

Related biology news :

1. 3-D tracking of single molecules inside cells
2. Immune molecule regulates brain connections
3. Missing sugar molecule raises diabetes risk in humans
4. Metallic molecules to nanotubes: Spread out!
5. Manipulating molecules for a new breed of electronics
6. Residual dipolar couplings unveil structure of small molecules
7. Scripps Research scientist discovers natural molecule indirectly prevents stable clot formation
8. New molecule could save brain cells from neurodegeneration, stroke
9. Missing molecules hold promise of therapy for pancreatic cancer
10. Unraveling Alzheimers: Simple small molecules could untangle complex disease
11. Plants remember winter to bloom in spring with help of special molecule
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/20/2016)... 20, 2016  VoiceIt is excited to announce ... By working together, VoiceIt and VoicePass ... and VoicePass take slightly different approaches to voice ... security and usability. ... new partnership. "This marketing and technology ...
(Date:5/12/2016)... , May 12, 2016 WearablesResearch.com ... just published the overview results from the Q1 wave ... the recent wave was consumers, receptivity to a program ... data with a health insurance company. "We ... to share," says Michael LaColla , CEO of ...
(Date:5/3/2016)... VILNIUS, Lithuania , May 3, 2016 /PRNewswire/ ... today released the MegaMatcher Automated Biometric Identification ... deployment of large-scale multi-biometric projects. MegaMatcher ABIS can ... and accuracy using any combination of fingerprint, face ... of MegaMatcher SDK and MegaMatcher ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... , ... While the majority of commercial spectrophotometers and fluorometers use the z-dimension ... are higher end machines that use the more unconventional z-dimension of 20mm. Z-dimension ... bottom of the cuvette holder. , FireflySci has developed several Agilent flow cell ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... Plate® YM (Yeast and Mold) microbial test has received AOAC Research Institute approval ... of microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... the launch of the Supplyframe Design Lab . Located in Pasadena, Calif., ... the future of how hardware projects are designed, built and brought to market. ...
Breaking Biology Technology: