Navigation Links
Model may offer better understanding of embryonic development
Date:3/9/2010

WEST LAFAYETTE, Ind. - A mathematical model developed at Purdue University can predict complex signaling patterns that could help scientists determine how stem cells in an embryo later become specific tissues, knowledge that could be used to understand and treat developmental disorders and some diseases.

During embryonic development, proteins attach to cell receptors and start a cascade of reactions. Understanding those reactions is difficult, however, because feedback signals go back out to the proteins or other molecules along the cascade, constantly changing the reaction pattern. The outcomes of those reactions and the feedback mechanisms - or inputs - are known because they can be observed, but how the inputs lead to the outputs isn't understood.

"We want to understand how stem cells become tissue-specific so that we can manipulate that process to create cells that could be used to treat injuries and diseases," said David Umulis, a Purdue assistant professor of agricultural and biological engineering. "Using a model approach, we can simulate these complex signaling patterns to get a better handle on the process."

Umulis created a model that predicted accurate outcomes when different feedback mechanisms were inserted. His results were published in the current issue of the journal Developmental Cell.

"Fruit fly embryos are a fantastic system to peer into early development since input/output relationships are easy to observe. You have a mutation and an output, but we don't typically know what happens in the middle," he said. "Realistic model embryos proved an additional tool that can be used to aid in that understanding. Models can link that cause and effect."

The study looked at fruit fly, or drosophila, embryos during very early development to decipher what controls the differentiation of these stem cells at their proper locations. During the process, cells take on identities that later specify tissue types in the adult organism. Before directional cues dictate development, the stem cells are capable of becoming many different tissues. Using models to analyze the dynamic signals the cells are receiving may help to better understand how to control similar cells in a laboratory setting.

Umulis said his model is a sort of template to allow researchers to test a number of hypotheses before conducting actual experiments. The information garnered from realistic 3-D models can guide the process and facilitate rapid discovery.

Umulis' next step is to count the number of molecules needed to initiate specific cell responses during embryonic development. The National Institutes of Health and Purdue University funded his work.


'/>"/>

Contact: Brian Wallheimer
bwallhei@purdue.edu
765-496-2050
Purdue University
Source:Eurekalert

Related biology news :

1. Novel 3-D cell culture model shows selective tumor uptake of nanoparticles
2. A new kind of rat model
3. JILA finds flaw in model describing DNA elasticity
4. Smithsonian researchers develop models to assess wetland health
5. Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding
6. Simulating kernel production influences maize model accuracy
7. MIT model could improve some drugs effectiveness
8. Model for the assembly of advanced, single-molecule-based electronic components developed at Pitt
9. Improving detection of nuclear smuggling goal of computer model of mechanical engineer
10. New chimeric mouse model for human liver diseases, drug testing
11. Study finds first-ever genetic animal model of autism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... DUBLIN , Apr. 11, 2017 Research ... Tracking Market 2017-2021" report to their offering. ... The global eye tracking market to grow at ... The report, Global Eye Tracking Market 2017-2021, has been prepared based ... report covers the market landscape and its growth prospects over the ...
(Date:4/5/2017)... YORK , April 5, 2017 Today ... is announcing that the server component of the HYPR ... known for providing the end-to-end security architecture that empowers ... HYPR has already secured over 15 million ... makers including manufacturers of connected home product suites and ...
(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... genomics analysis platform specifically designed for life science researchers to analyze and ... researcher Rosalind Franklin, who made a major contribution to the discovery of ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... pathology, announced today it will be hosting a Webinar titled, “Pathology is going ... Pathology Associates , on digital pathology adoption best practices and how Proscia improves ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced ... to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B ... to cross the cell membrane and bind intracellular STAT3 and inhibit its function. ...
(Date:10/10/2017)... 2017 International research firm Parks Associates announced today ... the TMA 2017 Annual Meeting , October 11 in ... home security market and how smart safety and security products impact the ... Parks Associates: Smart Home Devices: ... "The residential security market has experienced ...
Breaking Biology Technology: