Navigation Links
Model may offer better understanding of embryonic development
Date:3/9/2010

WEST LAFAYETTE, Ind. - A mathematical model developed at Purdue University can predict complex signaling patterns that could help scientists determine how stem cells in an embryo later become specific tissues, knowledge that could be used to understand and treat developmental disorders and some diseases.

During embryonic development, proteins attach to cell receptors and start a cascade of reactions. Understanding those reactions is difficult, however, because feedback signals go back out to the proteins or other molecules along the cascade, constantly changing the reaction pattern. The outcomes of those reactions and the feedback mechanisms - or inputs - are known because they can be observed, but how the inputs lead to the outputs isn't understood.

"We want to understand how stem cells become tissue-specific so that we can manipulate that process to create cells that could be used to treat injuries and diseases," said David Umulis, a Purdue assistant professor of agricultural and biological engineering. "Using a model approach, we can simulate these complex signaling patterns to get a better handle on the process."

Umulis created a model that predicted accurate outcomes when different feedback mechanisms were inserted. His results were published in the current issue of the journal Developmental Cell.

"Fruit fly embryos are a fantastic system to peer into early development since input/output relationships are easy to observe. You have a mutation and an output, but we don't typically know what happens in the middle," he said. "Realistic model embryos proved an additional tool that can be used to aid in that understanding. Models can link that cause and effect."

The study looked at fruit fly, or drosophila, embryos during very early development to decipher what controls the differentiation of these stem cells at their proper locations. During the process, cells take on identities that later specify tissue types in the adult organism. Before directional cues dictate development, the stem cells are capable of becoming many different tissues. Using models to analyze the dynamic signals the cells are receiving may help to better understand how to control similar cells in a laboratory setting.

Umulis said his model is a sort of template to allow researchers to test a number of hypotheses before conducting actual experiments. The information garnered from realistic 3-D models can guide the process and facilitate rapid discovery.

Umulis' next step is to count the number of molecules needed to initiate specific cell responses during embryonic development. The National Institutes of Health and Purdue University funded his work.


'/>"/>

Contact: Brian Wallheimer
bwallhei@purdue.edu
765-496-2050
Purdue University
Source:Eurekalert

Related biology news :

1. Novel 3-D cell culture model shows selective tumor uptake of nanoparticles
2. A new kind of rat model
3. JILA finds flaw in model describing DNA elasticity
4. Smithsonian researchers develop models to assess wetland health
5. Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding
6. Simulating kernel production influences maize model accuracy
7. MIT model could improve some drugs effectiveness
8. Model for the assembly of advanced, single-molecule-based electronic components developed at Pitt
9. Improving detection of nuclear smuggling goal of computer model of mechanical engineer
10. New chimeric mouse model for human liver diseases, drug testing
11. Study finds first-ever genetic animal model of autism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/20/2016)...  VoiceIt is excited to announce its new ... By working together, VoiceIt and VoicePass will offer ... take slightly different approaches to voice biometrics, collaboration ... usability. Both ... "This marketing and technology partnership allows ...
(Date:5/3/2016)...  Neurotechnology, a provider of high-precision biometric identification ... Identification System (ABIS) , a complete system for ... can process multiple complex biometric transactions with high ... face or iris biometrics. It leverages the core ... MegaMatcher Accelerator , which have been used in ...
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
Breaking Biology News(10 mins):
(Date:6/27/2016)...  Liquid Biotech USA , ... Sponsored Research Agreement with The University of Pennsylvania ... cancer patients.  The funding will be used to ... clinical outcomes in cancer patients undergoing a variety ... employed to support the design of a therapeutic, ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... WA (PRWEB) , ... June 23, 2016 , ... ... announces the release of its second eBook, “Clinical Trials Patient Recruitment and Retention ... recruitment and retention in this eBook by providing practical tips, tools, and strategies ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
Breaking Biology Technology: