Navigation Links
Mobile LIDAR technology expanding rapidly
Date:3/15/2013

CORVALLIS, Ore. Imagine driving down a road a few times and obtaining in an hour more data about the surrounding landscape than a crew of surveyors could obtain in months.

Such is the potential of mobile LIDAR, a powerful technology that's only a few years old and promises to change the way we see, study and record the world around us. It will be applied in transportation, hydrology, forestry, virtual tourism and construction and almost no one knows anything about it.

That may change with a new report on the uses and current technology of mobile LIDAR, which has just been completed and presented to the Transportation Research Board of the National Academy of Sciences. It will help more managers and experts understand, use and take advantage of this science.

The full exploitation of this remarkable technology, however, faces constraints. Too few experts are trained to use it, too few educational programs exist to teach it, mountains of data are produced that can swamp the computer capabilities of even large agencies, and lack of a consistent data management protocol clogs the sharing of information between systems.

"A lot of people and professionals still don't even know what mobile LIDAR is or what it can do," said Michael Olsen, an assistant professor of civil engineering at Oregon State University, and lead author of the new report. "And the technology is changing so fast it's hard for anyone, even the experts, to keep up.

"When we get more people using mobile LIDAR and we work through some of the obstacles, it's going to reduce costs, improve efficiency, change many professions and even help save lives," Olsen said.

LIDAR, which stands for light detecting and ranging, has been used for 20 years, primarily in aerial mapping. Pulses of light up to one million times a second bounce back from whatever they hit, forming a highly detailed and precise map of the landscape. But mobile LIDAR used on the ground, with even more powerful computer systems, is still in its infancy and has only been commercially available for five years.

Mobile LIDAR, compared to its aerial counterpart, can provide 10 to 100 times more data points that hugely improve the resolution of an image. Moving even at highway speeds, a technician can obtain a remarkable, three-dimensional view of the nearby terrain.

Such technology could be used repeatedly in one area and give engineers a virtual picture of an unstable, slow-moving hillside. It could provide a detailed image of a forest, or an urban setting, or a near-perfect recording of surrounding geology. An image of a tangle of utility lines in a ditch, made just before they were backfilled and covered, would give construction workers 30 years later a 3-D map to guide them as they repaired a leaking pipe.

Mobile LIDAR may someday be a key to driverless automobiles, or used to create amazing visual images that will enhance "virtual tourism" and let anyone, anywhere, actually see what an area looks like as if they were standing there. The applications in surveying and for transportation engineering are compelling, and may change entire professions.

Just recently, mobile LIDAR was used to help the space shuttle Endeavour maneuver through city streets to reach its final home in Los Angeles.

Some of the newest applications, Olsen said, will have to wait until there are enough experts to exploit them. OSU operates one of the few programs in the nation to train students in both civil engineering and this evolving field of "geomatics," and more jobs are available than there are people to fill them. Due to a partnership with Leica Geosystems and David Evans and Associates, OSU has sufficient hardware and software to maintain a variety of geomatics courses. But more educational programs are needed, Olsen said, and fully-trained and licensed professionals can make $100,000 or more annually.

Other nations, he said, including Canada, have made a much more aggressive commitment to using mobile LIDAR and training students in geomatics. It is critical for the U.S. to follow suit, Olsen said.


'/>"/>

Contact: Michael Olsen
michael.olsen@oregonstate.edu
541-737-9327
Oregon State University
Source:Eurekalert

Related biology news :

1. Validity CTO to Present Natural ID Solutions for Improving Mobile Risk Management and User Experience at NFC Solutions Summit 2012
2. NIH-funded study examines use of mobile technology to improve diet and physical activity behavior
3. Dartmouth research imparts momentum to mobile health
4. Mobile phones and wireless networks: No evidence of health risk found
5. Integrated Biometrics Introduces Sherlock The Worlds Lightest, Thinnest, Smallest, Appendix F Mobile ID Fingerprint Sensors
6. Integrated Biometrics Apresenta Sherlock, o Menor, Mais Leve e Fino Sensor Appendix F Mobile ID
7. Integrated Biometrics stellt Sherlock vor - die weltweit leichtesten, dünnsten und kleinsten Appendix F Mobile ID-Fingerabdrucksensoren
8. Integrated Biometrics présente Sherlock, le capteur dempreintes digitales le plus léger, le plus mince et le plus petit, certifié conformément à lAnnexe F Mobile ID
9. FASEB SRC announces conference registration open for: Mobile DNA in Mammalian Genomes
10. Mercury contamination in water can be detected with a mobile phone
11. LaserLock Technologies Files for Provisional Patent Enabling Mobile Phones with Anti-Counterfeiting Technology
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/21/2016)... , January 21, 2016 ... to a new market research report "Emotion Detection and ... Others), Software Tools (Facial Expression, Voice Recognition and ... - Global forecast to 2020", published by MarketsandMarkets, ... expected to reach USD 22.65 Billion by 2020, ...
(Date:1/20/2016)... Calif. , Jan. 20, 2016  Synaptics ... of human interface solutions, today announced sampling of ... solution for wearables and small screen applications including ... as printers. Supporting round and rectangular shapes, as ... offers excellent performance with moisture on screen, while ...
(Date:1/13/2016)... , January 13, 2016 ... has published a new market report titled - Biometric Sensors ... and Forecast, 2015 - 2023. According to the report, the global ... and is anticipated to reach US$1,625.8 mn by 2023, ... 2023. In terms of volume, the biometric sensors market ...
Breaking Biology News(10 mins):
(Date:2/10/2016)... -- The Maryland House of Delegates and House Speaker ... Maryland School of Medicine Dean E. Albert Reece ... System President and CEO Robert Chrencik , MBA, ... given to the public by the leader of the ... and Mr. Chrencik for their contributions to our statewide ...
(Date:2/10/2016)... ... February 10, 2016 , ... ... that it has joined the Human Vaccines Project, a public-private partnership to ... cancer. , The Human Vaccines Project brings together leading pharmaceutical and ...
(Date:2/10/2016)... , Feb. 10, 2016  Matchbook, Inc., ... for fast growing biotech companies, announced today the ... Procurement Strategic Advisor. Jim brings nearly 25 years ... and procurement, having spent nearly two decades in ... Chain/Logistics and Procurement at Genzyme and, most recently ...
(Date:2/10/2016)... Latham, NY (PRWEB) , ... February 10, 2016 , ... ... photodiode packages at the SPIE Photonics West conference in San Francisco’s Moscone ... and 14 in the same venue. , These latest InGaAs PIN diode standard ...
Breaking Biology Technology: