Navigation Links
Mining ancient ores for clues to early life
Date:12/10/2012

An analysis of sulfide ore deposits from one of the world's richest base-metal mines confirms that oxygen levels were extremely low on Earth 2.7 billion years ago, but also shows that microbes were actively feeding on sulfate in the ocean and influencing seawater chemistry during that geological time period.

The research, reported by a team of Canadian and U.S. scientists in Nature Geoscience, provides new insight into how ancient metal-ore deposits can be used to better understand the chemistry of the ancient oceans and the early evolution of life.

Sulfate is the second most abundant dissolved ion in the oceans today. It comes from the "rusting" of rocks by atmospheric oxygen, which creates sulfate through chemical reactions with pyrite, the iron sulfide material known as "fool's gold."

The researchers, led by PhD student John Jamieson of the University of Ottawa and Prof. Boswell Wing of McGill, measured the "weight" of sulfur in samples of massive sulfide ore from the Kidd Creek copper-zinc mine in Timmins, Ontario, using a highly sensitive instrument known as a mass spectrometer. The weight is determined by the different amounts of isotopes of sulfur in a sample, and the abundance of different isotopes indicates how much seawater sulfate was incorporated into the massive sulfide ore that formed at the bottom of ancient oceans. That ancient ore is now found on the Earth's surface, and is particularly common in the Canadian shield.

The scientists found that much less sulfate was incorporated into the 2.7 billion-year-old ore at Kidd Creek than is incorporated into similar ore forming at the bottom of oceans today. From these measurements, the researchers were able to model how much sulfate must have been present in the ancient seawater. Their conclusion: sulfate levels were about 350 times lower than in today's ocean. Though they were extremely low, sulfate levels in the ancient ocean still supported an active global population of microbes that use sulfate to gain energy from organic carbon.

"The sulfide ore deposits that we looked at are widespread on Earth, with Canada and Quebec holding the majority of them," says Wing, an associate professor in McGill's Department of Earth and Planetary Science. "We now have a tool for probing when and where these microbes actually came into global prominence."

"Deep within a copper-zinc mine in northern Ontario that was once a volcanically active ancient seafloor may not be the most intuitive place one would think to look for clues into the conditions in which the earliest microbes thrived over 2.7 billion years ago," Jamieson adds. "However, our increasing understanding of these ancient environments and our abilities to analyze samples to a very high precision has opened the door to further our understanding of the conditions under which life evolved."


'/>"/>

Contact: Chris Chipello
christopher.chipello@mcgill.ca
514-398-4201
McGill University
Source:Eurekalert  

Related biology news :

1. Mining cleanup benefits from Texas A&M expertise
2. Minimizing mining damage with manure
3. Melting glaciers, enough sand to bury London, and ancient ecosystem engineering
4. Ancient civilizations reveal ways to manage fisheries for sustainability
5. Ancient whale species sheds new light on its modern relatives
6. Ancient Egyptian cotton unveils secrets of domesticated crop evolution
7. Ammonites found mini oases at ancient methane seeps
8. New coelacanth find rewrites history of the ancient fish
9. LSU research finds orangutans host ancient jumping genes
10. Whale population size, dynamics determined based on ancient DNA
11. Ancient giant turtle fossil revealed
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Mining ancient ores for clues to early life
(Date:6/15/2016)... , June 15, 2016 ... market report titled "Gesture Recognition Market by Application Market - Global ... 2016 - 2024". According to the report, the  global ... billion in 2015 and is estimated to grow ... 48.56 billion by 2024.  Increasing application ...
(Date:6/3/2016)... , June 3, 2016 ... Management) von Nepal ... und Lieferung hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, ... führend in der Produktion und Implementierung von ... der Ausschreibung im Januar teilgenommen, aber Decatur ...
(Date:6/1/2016)... , June 1, 2016 Favorable ... Election Administration and Criminal Identification to Boost Global Biometrics ... recently released TechSci Research report, " Global Biometrics Market ... Competition Forecast and Opportunities, 2011 - 2021", the global ... by 2021, on account of growing security concerns across ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... a new line of intelligent tools designed, tuned and optimized exclusively for Okuma ... 12–17 in Chicago. The result of a collaboration among several companies with expertise ...
(Date:6/22/2016)... 2016 Research and Markets has announced the ... to their offering. The ... $29.3 billion in 2013. The market is expected to grow at ... to 2020, increasing from $50.6 billion in 2015 to $96.6 billion ... the forecast period (2015 to 2020) are discussed. As well, new ...
(Date:6/22/2016)... 2016   ViaCyte, Inc. , a privately-held regenerative ... replacement therapy for the treatment of diabetes in clinical-stage ... Meeting.  ISSCR 2016, the Global Stem Cell Event, is ... in San Francisco.    ... follows:Event: , Focus Session: Tools for Basic and Applied ...
(Date:6/22/2016)... TAMPA, Fla. and ALBANY, ... Life Sciences Corporation (Teewinot) and Albany Molecular Research, ... that AMRI has licensed Teewinot,s technology to produce ... (CBCA) analytical standard. The CBCA analytical standard is ... processes involve the expression of cannabinoid biosynthetic genes ...
Breaking Biology Technology: