Navigation Links
Milestone in fight against deadly disease

SEATTLE & CHICAGO Scientists at Seattle Biomedical Research Institute (Seattle BioMed) and Northwestern University Feinberg School of Medicine have reached a major milestone in the effort to wipe out some of the most lethal diseases on the planet. As leaders of two large structural genomics centers, they've experimentally determined 500 three-dimensional protein structures from a number of bacterial and protozoan pathogens, which could potentially lead to new drugs, vaccines and diagnostics to combat deadly infectious diseases. Some of the structures solved by the centers come from well-known, headline-grabbing organisms, like the H1N1 flu virus. Portraits of these protein structures, ranging from the plague, cholera and rabies to H1N1 can been seen on the websites and

The Center for Structural Genomics of Infectious Diseases (CSGID), which is led by Wayne Anderson, Professor of Molecular Pharmacology and Biological Chemistry at Feinberg (Chicago, IL), and the Seattle Structural Genomics Center for Infectious Disease (SSGCID), led by Peter Myler, Full Member at Seattle BioMed and Affiliate Professor of Global Health and Medical Education & Biomedical Informatics at the University of Washington, were created in 2007 through contracts from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH). The Centers' mission is to apply genome-scale approaches in solving protein structures from biodefense organisms, as well as those causing emerging and re-emerging diseases.

"By determining the three-dimensional structure of these proteins, we can identify important pockets or clefts and design small molecules which will disrupt their disease-causing function," said Myler. "Each solved structure provides an important piece of new knowledge for scientists about a wide variety of diseases."

Recently, scientists from the Seattle group, which includes Emerald BioStructures, the University of Washington and Pacific Northwest National Laboratory in addition to Seattle BioMed, provided structural data that offered insight into how specific differences in one of the RNA polymerase proteins in the swine flu virus changed the way it interacts with host cells, allowing it to infect humans. This information could provide a basis for future antiviral agents that could be used to prevent replication of the flu virus.

Other structures solved come from little known or emerging pathogens that cause disease and death, but have been less well studied by the research community. For example, the SSGCID solved the first protein structure from Rickettsia, bacterial pathogens carried by many ticks, fleas and lice that causes several forms of typhus and spotted fever.

Recently, scientists at CSGID determined the structure of a crucial enzyme in the shikimate pathway of Clostridium difficile, which is the most serious cause of antibiotic-associated diarrhea in humans and can lead to pseudomembranous colitis, a severe infection of the colon often resulting from eradication of the normal gut flora by antibiotics. The shikimate pathway is essential for plants and bacteria like C. difficile, but is not present in animals, making this enzyme an attractive antibiotic target. CSGID researchers have also determined the structures of numerous proteins from other disease-causing organisms such as Bacillus anthracis (anthrax), Salmonella enterica (salmonellosis food poisoning), Vibrio cholerae (cholera), Yersinia pestis (plague), and Staphylococcus aureus (staph infections).

The CSGID is a consortium which includes researchers from the University of Chicago (Chicago, IL), the J. Craig Venter Institute (Rockville, MD), University College London (London, United Kingdom), the University of Toronto (Toronto, Canada), the University of Virginia (Charlottesville, VA), the University of Texas Southwestern Medical Center at Dallas (Dallas, TX), and the Washington University School of Medicine (St. Louis, MO), in addition to Northwestern University.

Mapping the structures of drug-resistant bacteria is also a priority for the two centers. "Drug-resistant bacteria are an increasing threat to us and we need to get new drugs to stay ahead of them," said Anderson, Principal Investigator of CSGID. "The recent years have brought not only an avalanche of new macromolecular structures, but also significant advances in the protein structure determination methodology that are now making their way into drug discovery. We provide the structural information so that in the future companies can develop new drugs to overcome resistance."

The structures solved by the Centers are immediately made available to the international scientific community through the NIH-supported Protein Data Bank (, providing a "blueprint" for development of new drugs, vaccines and diagnostics.

The Centers are on track to ultimately identify nearly 500 more structures by the end of the current five-year NIH contract in 2012. Apart from the protein structures, the two Centers make available to the scientific community all the clones and purified proteins that they produce in order to facilitate a global collaboration in the fight against deadly diseases.


Contact: Erin White
Northwestern University

Related biology news :

1. IVCC and Syngenta reach key insecticide development milestone
2. Biogen Idecs oral compound BG-12 achieves development milestones in MS and RA
3. Milestone discovery in cell behaviors
4. Lockheed Martin Team Completes Key Design Milestone on Federal Bureau of Investigations Next Generation Identification Program
5. Milestone in live microscopy focus of $2 million NIH grant
6. ExcellGene and Khner achieved milestone in development of novel 250 Liter mammalian cell culture bioreactors
7. Milestone achieved toward production of malaria treatment using synthetic biology and fermentation
8. Missouri Botanical Garden mounts milestone 6 millionth herbarium specimen
9. U of I scientists develop tool to trace metabolism of cancer-fighting tomato compounds
10. University of Minnesota engineering researcher finds new way to fight antibiotic-resistant bacteria
11. How hummingbirds fight the wind
Post Your Comments:
(Date:10/27/2015)... -- Munich, Germany , October ... automatically maps data from mobile eye tracking videos created ... that they can be quantitatively analyzed with SMI,s analysis ... , October 28-29, 2015. SMI,s Automated Semantic Gaze ... tracking videos created with SMI,s Eye Tracking Glasses ...
(Date:10/26/2015)... 2015  Delta ID Inc., a company focused on ... PC devices, announced its ActiveIRIS® technology powers the iris ... launched by NTT DOCOMO, INC in Japan ... smartphone to include iris recognition technology, after a very ... in May 2015, world,s first smartphone to have this ...
(Date:10/22/2015)...  Synaptics (NASDAQ: SYNA ), a leading developer of human ... September 30, 2015. --> --> ... 66 percent over the comparable quarter last year to $470.0 million. ... million, or $0.62 per diluted share. --> ... of fiscal 2016 grew 39 percent over the prior year period ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... International Society for ... of the premier annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference ... ISPE hosted the largest number of attendees in more than a decade. ...
(Date:11/24/2015)... , ... November 24, 2015 , ... The Academy of ... Interest Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the First–Person ... few years. Many AMA members have embraced this type of racing and several new ...
(Date:11/24/2015)... FRANCISCO , Nov. 24, 2015  Twist ... announced that Emily Leproust, Ph.D., Twist Bioscience chief ... Jaffray Healthcare Conference on December 1, 2015 at ... Hotel in New York City. --> ... . Twist Bioscience is on Twitter. ...
(Date:11/24/2015)... , Nov. 24, 2015 Capricor Therapeutics, ... focused on the discovery, development and commercialization of first-in-class ... Chief Executive Officer, is scheduled to present at the ... at 10:50 a.m. EST, at The Lotte New York ... . . --> ...
Breaking Biology Technology: